serie EP

Istruzioni d'uso Riduttori e motoriduttori epicicloidali

Indice

1	Informazioni generali	5
2	Condizioni e limiti di utilizzo	9
3	Stato di fornitura	10
4	Sollevamento, movimentazione e immagazzinamento	12
5	Installazione	14
6	Adattatore flangia universale	31
7	Montaggio o sostituzione del motore	32
8	Forme costruttive, quantità di olio e serbatoi	34
9	Lubrificazione	52
10	Entrate, opzioni e sistemi di raffreddamento	55
11	Messa in servizio e manutenzione	67

Informazioni generali

Questo documento fornisce informazioni sulla movimentazione, installazione e manutenzione dei riduttori e motoriduttori ad assi paralleli e ortogonali (Serie G).

Il personale coinvolto in queste attività dovrà leggere attentamente e applicare rigorosamente tutte le istruzioni fornite qui di seguito.

Le informazioni e i dati contenuti in questo documento corrispondono al livello tecnico raggiunto al momento della stampa dello stesso. Rossi si riserva il diritto di apportare, senza preavviso, le modifiche ritenute opportune per il miglioramento del prodotto.

1.1

Dismissione, smaltimento e riciclo

Prima di dismettere il riduttore o il motoriduttore occorre renderlo inattivo, disconnettendo eventuali contatti elettrici, e svuotarlo del lubrificante, tenendo presente che l'olio esausto ha un forte impatto ambientale e pertanto non deve essere disperso nel suolo o in acque superficiali.

La dismissione deve essere eseguita da operatori formati ed esperti, nel rispetto delle leggi vigenti in materia di salute e sicurezza sul lavoro e di protezione dell'ambiente.

Le parti del riduttore o del motoriduttore devono essere smaltite presso centri di raccolta autorizzati per il trattamento, il riciclo e lo smaltimento dei rifiuti, secondo le norme vigenti nel paese in cui avverrà lo smaltimento

Componente	Materiale				
Ingranaggi cilindrici a dentatura esterna (pignoni e ruote dentate) e interna (corone epicicloidali)	Acciaio da cementazione o da bonifica				
Ingranaggi conici					
Ingranaggi a vite					
Alberi					
Cuscinetti volventi					
Linguette					
Unità di bloccaggio e collari di bloccaggio					
Basamenti per Drive Unit	Acciaio di costruzione				
Copriventola	Lamiera di acciaio				
Ventole	Alluminio o tecnopolimeri				
Bracci di reazione	Acciaio da costruzione o ghisa				
Carcassa, coperchi, flange (in entrata e in uscita) del riduttore – Portasatelliti (riduttori epicicloidali)	Ghisa grigia o sferoidale				
Ingranaggi a vite: ruote a vite senza fine	Bronzo e ghisa sferoidale				
Anelli di tenuta	Elastomeri e acciaio				
O-ring					
V-ring					
Cappellotti di protezione					
Giunti di collegamento	Elastomeri e acciaio				
Lubrificanti	Olio minerale additivato EP				
Olio sintetico a base PAG (fornitura di fabbrica)					
Olio sintetico a base PAO					
Grasso sintetico a base PAO					
Serpentina di raffreddamento	Rame o alluminio				
Circuito di lubrificazione forzata: tubi e raccordi	Acciaio o rame				

Componenti del motore	Materiale
Carcassa - Scudi - Flange	Alluminio o ghisa
Statore	Acciaio e rame
Rotore	Acciaio e alluminio
Cuscinetti volventi	Acciaio
Anelli di tenuta	Elastomero e acciaio
Freno	Acciaio, rame, materiali plastici, elastomeri

1.1.1

Smaltimento dei materiali di imballaggio

I materiali che costituiscono l'imballo devono essere smaltiti presso centri di raccolta autorizzati, privilegiando la raccolta differenziata e il riciclo, secondo le disposizioni di legge vigenti nel paese in cui avverrà lo smaltimento; occorre, inoltre, fare riferimento alle informazioni contenute sull'eventuale etichettatura ambientale riportata sull'imballo o reperibili sui canali digitali (es.: APP, QR code, siti web);

Tipo di imballo	Materiale
Casse di legno, pallet, travetti,	Imballaggi di legno
Imballaggi e scatole di cartone, fogli di cartone e di carta ondulata, carta arricciata, \dots	Imballaggi di carta e cartone
Imballaggi di plastica, scacchi barriera, pluriball, preformati,	Imballaggi di plastica

Per informazioni sul corretto smaltimento del riduttore o motoriduttore, dei suoi componenti e del materiale da imballo o sui centri di raccolta autorizzati per il trattamento, il riciclo e lo smaltimento più vicini, contattare la filiale Rossi spa di riferimento.

1.2

Sicurezza

I paragrafi contrassegnati dai simboli sottoindicati contengono disposizioni che dovranno essere tassativamente osservate al fine di garantire **l'incolumità** delle persone ed evitare **danni rilevanti** alla macchina o all'impianto.

Situazione di pericolo (elettrico o meccanico), come ad esempio:

- presenza di tensione elettrica;
- temperatura superiore a 50 °C;
- presenza di organi in movimento durante il funzionamento;
- carichi sospesi (sollevamento e movimentazione);
- eventuale livello sonoro elevato (> 85 dB(A)).

IMPORTANTE: i riduttori e motoriduttori forniti da Rossi S.p.A. sono "quasi macchine" e in quanto tali sono destinati ad essere incorporati in apparecchi o sistemi finiti e ne è vietata la messa in servizio fino a quando l'apparecchio o il sistema nel quale il componente è stato incorporato non sia stato dichiarato conforme:

- alla Direttiva macchine 2006/42/CE e successivi aggiornamenti; in particolare, eventuali protezioni antinfortunistiche per estremità d'albero non utilizzate e per passaggi copriventola eventualmente accessibili (o altro), sono a cura dell'Acquirente;
- alla Direttiva «Compatibilità elettromagnetica (EMC)» 2004/108/CE e successivi aggiornamenti.

Attenzione! Si raccomanda di attenersi a tutte le istruzioni del presente manuale, a tutte le normative applicabili in materia di corretta installazione e alle vigenti disposizioni di legge in materia di sicurezza. Se vi sono pericoli per persone o cose derivanti da cadute o proiezioni del riduttore o di parti di esso, prevedere appropriate sicurezze contro:

- l'allentamento o la rottura delle viti di fissaggio;
- la rotazione o lo sfilamento del riduttore dal perno macchina conseguenti a rotture accidentali del vincolo di reazione;
- la rottura accidentale del perno macchina.

In caso di funzionamento anomalo (aumento di temperatura, vibrazioni o rumorosità inusuali, ecc.) arrestare immediatamente la macchina.

Installazione

Un'installazione non corretta, un uso improprio, la rimozione delle protezioni, lo scollegamento dei dispositivi di protezione, la carenza di ispezioni e manutenzione, i collegamenti impropri, possono causare danni gravi a persone o cose. Pertanto il componente deve essere movimentato, installato, messo in servizio, gestito, ispezionato, manutenuto e riparato esclusivamente da personale responsabile qualificato.

Il personale qualificato deve essere **specificatamente istruito** ed avere l'esperienza necessaria per **riconoscere** gli eventuali **rischi** (ved. tab. 1.2.1 - Rischi Residui) connessi ai presenti prodotti evitando possibili emergenze.

I riduttori e i motoriduttori del presente manuale sono normalmente destinati ad essere impiegati in **aree industriali**: protezioni supplementari eventualmente necessarie devono essere adottate e garantite da chi è responsabile dell'installazione.

Attenzione! Componenti in esecuzione speciale o con varianti costruttive possono differire nei dettagli rispetto a quelli descritti e possono richiedere informazioni aggiuntive.

Attenzione! Per l'installazione, l'uso e la manutenzione del **motore elettrico** (normale, autofrenante o comunque speciale) o dell'eventuale motovariatore e/o apparecchiatura elettrica di alimentazione (convertitore di frequenza, soft-start ecc.), e/o eventuali apparecchiature elettriche opzionali (es: unità autonoma di raffreddamento, ecc.), consultare la documentazione specifica ad essi allegata. All'occorrenza richiederla.

Informazioni generali

Manutenzione

Qualunque tipo di operazione sul riduttore o sui componenti ad esso connessi deve avvenire **a macchina ferma e fredda**: scollegare il motore (compresi gli equipaggiamenti ausiliari) dall'alimentazione, il riduttore dal carico e assicurarsi che si siano attivati i sistemi di sicurezza contro ogni avviamento involontario e, ove si renda necessario, prevedere dispositivi meccanici di bloccaggio (da rimuovere prima della messa in servizio).

Attenzione! Durante il funzionamento i riduttori potrebbero avere **superfici calde**; attendere sempre che il riduttore o il motoriduttore si sia raffreddato prima di intraprendere qualunque operazione.

Ulteriore documentazione tecnica (es.: cataloghi) è reperibile sul sito sito internet www.rossi-group.com oppure può essere richiesta direttamente a Rossi S.p.A. Per eventuali chiarimenti e/o informazioni, interpellare Rossi S.p.A. specificando tutti i dati di targa.

Non tentare di riutilizzare parti o componenti sostituiti a seguito di operazioni di manutenzione o riparazione che tuttavia possano apparire ancora integri e idonei all'uso; ciò potrebbe essere causa di una perdita grave di funzionalità e di sicurezza del prodotto.

Rossi

Tab. 1.2.1 - Rischi residui

I prodotti forniti da Rossi S.p.A. sono stati progettati e fabbricati in accordo ai requisiti essenziali di sicurezza e salute previsti dalla Direttiva Macchine 2006/42/CE - Allegati I.

Nella tabella seguente sono elencati i rischi residui che l'utilizzatore è tenuto a trattare in conformità alle istruzioni contenute nel presente documento e in quelli eventualmente allegati alla spedizione.

Natura/Causa del rischio	Contromisure
Operazioni di installazione e manutenzione	Il componente deve essere movimentato, installato, messo in servizio, gestito, ispezionato, manutenuto e riparato esclusivamente da personale responsabile qualificato che dovrà leggere attentamente e applicare rigorosamente tutte le istruzioni contenute nel presente documento, quelle eventualmente allegate alla spedizione. Dovrà, inoltre, essere specificatamente istruito e avere l'esperienza necessaria per riconoscere i rischi e le potenziali situazioni di pericolo (elettrico o meccanico) connessi ai presenti prodotti, come ad esempio, ma non solo: - presenza di tensione elettrica; - presenza di temperatura superiore a 50 °C; - presenza di organi in movimento durante il funzionamento; - presenza di carichi sospesi; - presenza di eventuale livello sonoro elevato (> 85 dB (A). Dovrà essere munito di adeguati dispositivi di protezione individuale (DPI) e conoscere e osservare tutte le normative applicabili in materia di corretta installazione e le vigenti disposizioni di legge in materia di sicurezza onde garantire l'incolumità delle persone ed evitare danni rilevanti alla macchina o all'impianto.
Caduta o proiezione di oggetti	Per i riduttori provvisti di dispositivo antiretro prevedere un sistema di protezione contro la proiezione di oggetti derivanti dall rottura del dispositivo stesso
	Per i riduttori provvisti di collegamento con giunto (albero veloce e/o albero lento) prevedere protezioni contro la proiezione di oggetti derivanti dalla rottura del giunto stesso.
	Per i riduttori con fissaggio pendolare prevedere appropriate sicurezze contro: - l'allentamento o la rottura delle viti di fissaggio; - la rotazione o lo sfilamento del riduttore dal perno macchina conseguenti a rotture accidentali del vincolo di reazione; - la rottura accidentale del perno macchina.
Elementi mobili	Prevedere eventuali protezioni antinfortunistiche per estremità d'albero non utilizzate e per passaggi copriventola eventualmente accessibili (o altro).
	Ogni operazione sul riduttore o motoriduttore deve avvenire a macchina ferma e disalimentata e riduttore o motoriduttore freddo.
Temperature estreme	Durante il funzionamento i riduttori potrebbero avere superfici calde (> 50 °C); prima di intraprendere qualunque operazione, attendere sempre che il riduttore o il motoriduttore si sia raffreddato (attendere da 1 a 3 ore circa secondo la grandezza); eventualmente effettuare un rilievo di temperatura sulla superficie del riduttore o motoriduttore in prossimità dell'albero veloce. Lo stesso vale per il giunto idraulico, se presente.
	Dopo un periodo di funzionamento, il riduttore è soggetto a una lieve sovrappressione interna- che può causare fuoriuscita di fluido ustionante.
	Pertanto, prima di allentare i tappi (di qualunque tipo) attendere che il riduttore si sia raffreddato; diversamente avvalersi di opportune protezioni (DPI) contro le ustioni derivanti dal contatto accidentale con l'olio caldo.
	In ogni caso procedere sempre con la massima cautela.
Rumore	In relazione alla grandezza, al rapporto di trasmissione al rotismo, al tipo di servizio, al sistema di fissaggio del riduttore o del motoriduttore il livello di emissione sonora può essere superiore a 85 dB(A). Effettuare misure in campo e, se necessario, dotare il persnale interessato di opportuni dispositivi di protezione individuale (DPI).
Cambiamenti che possono com- promettere la sicurezza dell'ap- parecchiatura	Non apportare modifiche strutturali ai prodotti forniti da Rossi (riduttori, motoriduttori, gruppo di comandi, ecc.) senza previa approvazione da parte di Rossi S.p.A.
Uso di componenti sostitutivi con caratteristiche non idonee per l'applicazione	I pezzi di ricambio devono essere quelli autorizzati da Rossi S.p.A.

I riduttori sono adatti a funzionare a temperatura ambiente 0 °C ÷ +40 °C (con picchi -20 °C ÷ +50 °C), con anelli di tenuta e componenti standard.

Il funzionamento al di fuori di questo campo, con un minimo di -40 °C e un massimo di +60 °C, deve essere valutato in relazione alle condizioni operative specifiche, al tipo di servizio, al tipo di lubrificante, al tipo di tenute e al sistema di raffreddamento / riscaldamento (ove possibile); contattare Rossi S.p.A.

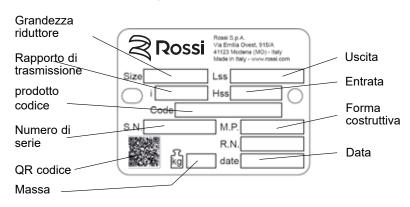
Temperatura ambiente di esercizio e di stoccaggio consentita in relazione al tipo di lubri-

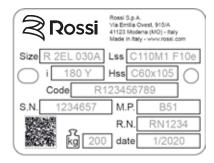
	ficante 1)		Lubrifican- te minerale
	Condizioni di funzionamento		
	Temperatura ambiente minima	-20 °C	-10 °C
Temperatura	Temperatura ambiente massima	+50 °C	+40 °C
ambiente	Temperatura ambiente minima per la progettazione ATEX	-20 °C	-10 °C
-	Temperatura ambiente massima per progettazione ATEX	+40 °C	+40 °C
allowbreak all	Condizioni di conservazione		
	Temperatura ambiente minima di conservazione	-10 °C	-10 °C
	Temperatura massima dell'ambiente di conservazione	+50 °C	+50 °C
Temperatura	Temperatura minima dell'olio per l'avviamento a carico parziale 2)	-20 °C	-10 °C
olio	Temperatura minima dell'olio per l'avviamento a pieno carico	-10 °C	-5 °C
-	Temperatura massima nominale stabilizzata dell'olio consentita in condizioni di funziona- mento continuo (S1)	+95 °C	+95 °C 3)
$ au_{ m olio}$	Temperatura massima dell'olio di picco e occasionale consentita solo con servizio intermit- tente	+110 °C	+110 °C

¹⁾ Per la scelta del lubrificante e della viscosità ottimale in base alla temperatura au_{amb} e in caso di unità di lubrificazione indipendente, fare reimento al capitolo 8.8 (Lubrificazione).

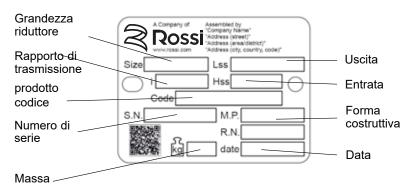
Per avviamenti e servizi con $T_{\text{olio}} < 0$ °C , considerare un assorbimento maggiore sul motore elettrico in base al tipo di lubrificante. riferimento al capitolo

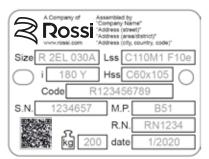
²⁾ Se è richiesto il servizio a pieno carico, prevedere rampe di avvio e di arresto graduali, evitando sovraccarichi e urti.


³⁾ Per il valore di temperatura dell'olio T > 75 °C e < 95 °C si raccomanda di utilizzare oli con almeno il grado di viscosità 30 cSt a 95 °C.


Targa di identificazione

Targa di identificazione


Ogni riduttore è dotato di una targhetta in alluminio anodizzato contenente le principali informazioni necessarie per una corretta identificazione del prodotto; la targhetta non deve essere rimossa e deve essere mantenuta integra e leggibile. Tutti i dati riportati nella targa devono essere specificati per eventuali ordini di parti di ricambio.


Assemblato da Rossi Italy

Assemblato dalle filiali

Lubrificante

Se non diversamente indicato, i riduttori fino alla grandezza 021A vengono forniti riempiti per la specifica forma costruttiva con olio sintetico PAO, come indicato in un'etichetta aggiuntiva.

3.3

Verniciatura

Verniciatura standard

Verniciatura interna	Verniciatu	Note		
	Colore finale Blu RAL 5010	Caratteristiche		
Primer a base di estere epos- sidico o resina fenolica mono- componente (preverniciato)	Primer a base di estere epossidico o resina fenolica monocomponente (preverniciato) + Smalto poliuretanico bicomponente idrosolubile	Resistente agli agenti atmosferici e aggressivi (categoria di corrosività atmosferica C3). secondo la norma ISO 12944-2). Adatto solo per ulteriori mani di vernici bicomposite ¹⁾	La verniciatura interna non resiste agli oli sintetici a base di poliglicoli (si può impiegare soltanto olio sintetico a base di polialfaolefine) Rimuovere con un raschietto o un solvente l'eventuale vernice delle superfici di accoppiamento del riduttore.	

¹⁾ Prima di applicare ulteriori mani di vernice, proteggere adeguatamente gli anelli di tenuta e sgrassare e carteggiare accuratamente le superfici del riduttore (invece di carteggiare è possibile applicare una mano di fondo a base d'acqua).

3.4

Protezioni e imballo

Le estremità libere degli alberi sporgenti e gli alberi cavi vengono protetti con olio antiruggine.

Tutte le parti interne sono protette con olio antiruggine. Se non concordato diversamente in sede d'ordine, i prodotti vengono adeguatamente imballati: su pallet, protetti mediante pellicola di polietilene, nastrati e reggiati (grandezze superiori); in cartonpallet nastrati e reggiati (grandezze inferiori); in cartoni nastrati (per piccole dimensioni e quantità).

All'occorrenza i riduttori sono convenientemente separati con cellule di schiuma antiurto o cartone da riempimento.

In generale l'imballo è idoneo per i normali trasporti via terra. Per il trasporto via mare è necessario prevedere un imballo speciale, in sede d'ordine.

Prima di movimentare o trasportare i riduttori, assicurarsi che l'imballo sia in buone condizioni e idoneo per il trasporto. I prodotti imballati non devono essere accatastati l'uno sull'altro.

Sollevamento, movimentazione e immagazzinamento

Ricevimento

Al ricevimento verificare che la merce corrisponda a quanto ordinato e che non abbia subito danni durante il trasporto; nel caso, contestarli immediatamente allo spedizioniere.

Evitare di mettere in funzione riduttori anche solo leggermente danneggiati. Segnalare a Rossi S.p.A. eventuali inadempienze.

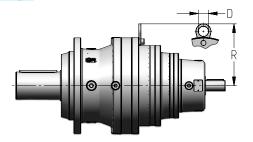
4.2

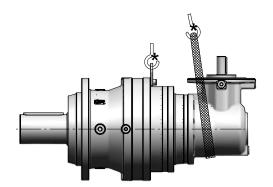
Sollevamento e movimentazione

In primo luogo assicurarsi che l'equipaggiamento di sollevamento (es.: gru, gancio, bulloni, cinghi, ecc.) sia adeguato al peso e alla grandezza del riduttore (il peso del prodotto è indicato sulla targhetta). Durante il sollevamento, utilizzare solo il punto di attacco indicato nelle figure seguenti.

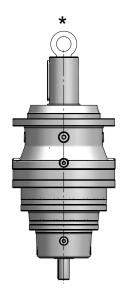
Fare attenzione a non sollevarsi (max 15° durante la movimentazione) e, se necessario, utilizzare cinghie aggiuntive solo per bilanciare il carico.

Non usare filetti frontali delle estremità d'albero in entrata per sollevare i riduttori.



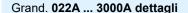

Avvertenza!

- · Il carico sospeso può cadere
- · Non sostare sotto il carico
- Il trasporto improprio può causare danni al riduttore.

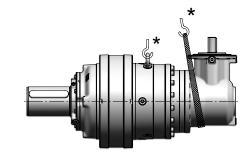

Sollevamento e movimentazione

Grand. 001A ... 021A dettagli

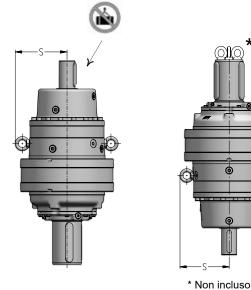
Grandezze	D Ø	R
001A, 002A 003A 006A 009A 015A	- 25 30	– 151 181
018A, 021A	35	213

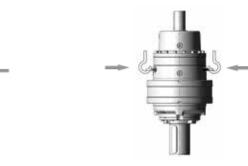





* Non incluso

Sollevamento, movimentazione e immagazzinamento


Sollevamento e movimentazione



Grand.	D ∅	F	₹	S		
	Ø	1EL 4EL 3EB, 4EB	2EB	1EL 4EL 3EB, 4EB	2EB	
022A	25	180	181	221	222	
030A	30	184	204	197	231	
031A	30	193	228	207	259	
042A	30	193	209	207	259	
043A	30	193	110	207	270	
060A	30	170	243	229	277	
061A	30	170	-	229	-	
085A	30	187	284	252	312	
125A	30	225	312	280	343	
180A 250A 355A	35 40 50	230 257 299	- - -	312 348 404	 	
500A	50	324	-	439	-	
710A	60	362	-	489	-	
1060A	90	470	-	640	-	
1500A	84	520	-	700	-	
2120A	94	565	-	797	-	
3000A	110	660	-	932	-	

4.3

√ Sollevamento e movimentazione corretto

⊗ Sollevamento e movimentazione non corretto

Immagazzinamento

L'ambiente deve essere sufficientemente pulito, asciutto e privo di vibrazioni eccessive (vef≤ 0,2 mm/s) per evitare danni ai cuscinetti (le vibrazioni eccessive devono essere tenute sotto controllo anche durante il trasporto, anche se rientrano in un intervallo più ampio) e la temperatura ambiente di stoccaggio deve essere di 0 ÷ +40 °C: sono accettabili picchi di 10 °C al di sopra e al di sotto (vedere anche le condizioni di funzionamento al capitolo 8.2 di cat. EP).

Il riduttore riempito d'olio deve essere posizionato secondo la posizione di montaggio indicata sulla targhetta.

Ruotare semestralmente gli alberi di qualche giro per prevenire danneggiamenti a cuscinetti e anelli di tenuta.

In ambienti normali e a condizione che il prodotto sia stato adequatamente protetto durante il trasporto, è previsto un periodo di conservazione fino a 1 anno.

Per un periodo di conservazione di 2 anni in un ambiente normale, è necessario prestare attenzione anche alle seguenti istru-

- · Ingrassare abbondantemente le guarnizioni, gli alberi e le eventuali superfici lavorate non verniciate e controllare periodicamente lo stato di conservazione dell'olio protettivo antiruggine.
- · riempire completamente i riduttori con l'olio di lubrificazione

Per stoccaggi superiori a 2 anni o in ambienti aggressivi o all'aperto, consultare Rossi S.p.A..

Generalità

Prima di effettuare l'installazione, verificare che:

- · non ci siano danni sugli alberi e sulle superfici di accoppiamento
- l'esecuzione sia adatta all'ambiente (temperatura, atmosfera, ecc.). In caso di installazione in ambienti a rischio di esplosione richiedere in fase d'ordine l'esecuzione ATEX II 2GD e 3GD.
- assicurarsi che la struttura su cui è montato il riduttore sia piana, livellata e sufficientemente robusta da garantire la stabilità del montaggio e l'assenza di vibrazioni (sono accettabili velocità di vibrazione v_{ef}≤ 3,5 mm/s per P_N < 15 kW ev_{ef}≤ 4,5 mm/s per P_N > 15 kW), tenendo conto di tutte le forze trasmesse dovute alle masse, al momento torcente, ai carichi radiali e assiali
- · la posizione di montaggio effettiva corrisponde ai dati di targa
- se è previsto un dispositivo antiretro, verificare la direzione corretta in base ai requisiti dell'applicazione
- allineare con cura il riduttore al motore e alla macchina azionata (se necessario, con l'ausilio di spessori), interponendo, se possibile, spessori
- montare il riduttore in modo da consentire il libero passaggio dell'aria per il raffreddamento del riduttore e del motore (in particolare dal lato della ventola, se previsto il raffreddamento accessorio della ventola)
- Evitare: strozzature nei passaggi dell'aria; vicinanza con fonti di calore che possano aumentare la temperatura dell'aria di raffreddamento e del riduttore (per irraggiamento); insufficiente ricircolazione d'aria e in generale applicazioni che compromettano il regolare smaltimento del calore.
- · verificare che la carcassa del riduttore sia priva di sporcizia al fine di garantire una efficiente dispersione del calore.
- Quando è possibile, proteggere il riduttore o il motoriduttore con opportuni accorgimenti dall'irraggiamento solare e dalle intemperie; in quest'ultimo caso la protezione diventa necessaria quando gli assi lento e veloce sono verticali o quando il motore è verticale con ventola in alto.
- le superfici di fissaggio (del riduttore e della macchina) devono essere pulite e di rugosità sufficiente a garantire un buon coefficiente di attrito (indicativamente Ra 1,6 ÷ 3,2 μm). Rimuovere con un raschietto o un solvente l'eventuale vernice del riduttore sulle superfici di accoppiamento e, soprattutto in presenza di carichi radiali esterni o di coppie richieste M₂≥ 0,7 × M_{N₂}, applicare adesivi di bloccaggio
- in presenza di carichi esterni, utilizzare perni o blocchi di bloccaggio, se necessario

Prima di effettuare l'allacciamento del motoriduttore assicurarsi che la tensione del motore corrisponda a quella di alimentazione. Se il senso di rotazione non corrisponde a quello desiderato, invertire due fasi della linea di alimentazione.

Y-∆ L'avviamento dovrebbe essere adottato per l'avviamento a vuoto (o con un carico molto ridotto) e per avviamenti dolci, bassa corrente di avviamento e sollecitazioni limitate, se richiesto.

Nel caso si prevedano sovraccarichi di lunga durata, urti o pericoli di bloccaggio, installare salvamotori, limitatori elettronici di momento torcente, giunti idraulici, di sicurezza, unità di controllo o altri dispositivi similari.

Si raccomanda di proteggere il motore con un taglio termico. Per servizi con elevato numero di avviamenti a carico è consigliabile la protezione del motore con **sonde termiche** (incorporate nello stesso); il relé termico non è idoneo, in quanto dovrebbe essere tarato a valori superiori alla corrente nominale del motore.

Collegare sempre le eventuali sonde termiche ai circuiti ausiliari di sicurezza.

Utilizzare varistori e/o filtri RC per limitare i picchi di tensione dovuti ai contattori.

· Per gli accessori non forniti da Rossi, prestare attenzione al loro corretto dimensionamento; se necessario, consultarci.

Attenzione!

La durata dei cuscinetti, la sicurezza di funzionamento dell'albero e del giunto dipendono dall'allineamento preciso degli alberi.

In presenza di un dispositivo antiretro si sconsiglia di smontare temporaneamente il motore dal riduttore per evitare di danneggiare il dispositivo.

Pertanto, occorre prestare la massima cura nell'allineamento del riduttore con il motore e con la macchina da comandare (se necessario, spessorare) interponendo tutte le volte che è possibile giunti elastici.

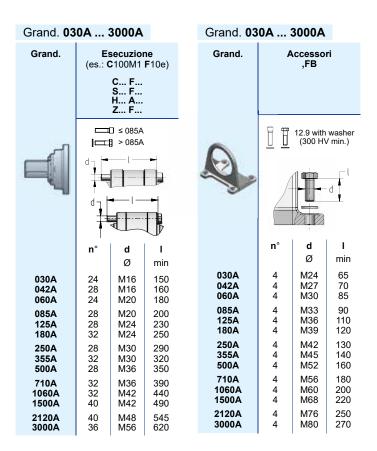
Quando una perdita accidentale di lubrificante può comportare gravi danni, aumentare la frequenza delle ispezioni e/o adottare accorgimenti opportuni (es.: indicatore a distanza di livello olio, lubrificante per industria alimentare, ecc.).

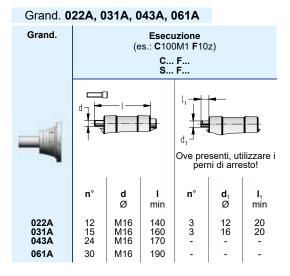
In presenza di ambiente inquinante, impedire in modo adeguato la possibilità di contaminazione del lubrificante attraverso gli anelli di tenuta o altro.

Per motori autofrenanti o speciali, richiedere documentazione specifica.

Viti e momenti di serraggio

Impiegare, a seconda del modello e della grandezza indicate in targa, viti e momenti di serraggio come mostrato nelle tabelle seguenti; è necessaria almeno la classe 10.9, ma in caso di sollecitazioni pesanti, carichi alternati e urti, impiegare la classe 12.9. Le viti di classe 12.9 devono essere dotate (dove indicato, ad esempio: $\frac{\pi}{2}$ vedi tabella seguente) di rondelle ISO 7089 (300 HV min.).


Effettuare con cautela il serraggio delle viti 12.9. L'eccessivo serraggio potrebbe danneggiare le viti.


Il momento di serraggio raccomandato si riferisce per un coefficiente di frizione stimato di μ = 0,14, valore relativo a bulloni di acciaio leggermente lubrificati, ricotti in nero o fosfatati ed esenti da umidità, filettature in acciaio o ghisa.

Non utilizzare lubrificanti che alterano il coefficiente d'attrito in quanto potrebbero sovraccaricare la vite.

Utilizzare sempre la chiave dinamometrica o simile e verificare la coppia di serraggio dopo le prime ore di funzionamento.

Grar	nd. 001	A 021	Α												
Grand.					Design (es. C 038M1 F 10a)										
		Н	F F A A		K F Z F					K F Z F			C P S P		
	<u> </u>												<u> </u>		
n_n	I□□□			-	ļ -						- [<u> </u>	_1
				, , , , , , , , , , , , , , , , , , ,		1						ì	/		,
										J			<u>†</u>		
	n°	d		ı	n°	d			n°	d		ı	n°	d	
		ø	min	max		ø	min	max		ø	min	max		ø	min
001A, 002A 003A	8 10	M10 M12	30 35	40 35	- 10	- M12	- 35	- 35	8	M10	10	13	4 4	M14 M16	40 45
003A 004A, 006A	10	M12	40	50	10	M12	35	35	-	-	-	-	4	M16	45
009A, 012A 015A	12 16	M14 M14	45 45	55 55	12 16	M14 M14	45 45	50 50	-	-	-	-	4 4	M20 M20	55 55
018A, 021A	12	M16	55	75	12	M16	50	50	-	-	-	-	4	M22	60

Momento di serraggio [N m]

R					S				Н			
grand.	Esecuzione in uscita	n	d	l min	Esecuzione in uscita	n	d	l min	Esecuzione in uscita	n	d	l min
007	R30b	12	M12	50	S30b	16	M10	100	H30b	10	M16	60
015	R30c	10	M16	60	S30c	16	M12	130	H30c	12	M16	55
021	R30d	24	M16	65	S30d	16	M14	140	H30d	12	M20	70
030	R30e	24	M16	65	S30e	24	M16	160	H30e	24	M20	80
042	R30f	24	M20	70	S30f	28	M16	180	H30f	24	M20	70
060	R30g	24	M20	80	S30g	24	M20	220	H30g	24	M20	80
085	R30h	24	M20	80	S30h	28	M20	240	H30h	24	M30	110
125	R30i	24	M24	90	S30i	28	M24	240	H30i	28	M24	90
180	R30j	28	M24	90	S30j	32	M24	260	H30j	32	M24	90
250	R30k	28	M30	110	S30k	28	M30	300	H30k	28	M30	110

Grand.	001A	021A
--------	------	------

Grand.	(e	secuzion s.: M A. Accessor es.: ,WF) i
	n°	d 10.9	I min
001A 002A 003A 006A 009A 015A	12 12 12	M10 M12* M18	30 40 50
018A 021A	12	M20	60

^{*)} Classe 12.9.

Grand.		ccessori npio, WF	
	n°	d 10.9	l min
030A	12	M24	70
042A	16	M24	70
060A	12	M30	90
085A	16	M30	90
125A	18	M30	100
180A	28	M30	100
250A	36	M30	110
355A	44	M30	110
500A	44	M33	130
710A	48	M36	140
1060A	40	M42	150
1500A	44	M42	160
2120A	44	M48	180
3000A	40	M56	220

Grand. 030A ... 3000A Momento di serraggio [N m]

			Classe
	8.8	10.9	12.9
Ø	$M_2 < 70\% M_{n2}$		Usare sempre la rosetta (300 HV min.)
M10	50	70	85
M12	85	120	145
M14	135	190	230
M16	210	300	355
M20	400	560	675
M22	530	770	895
M24	690	1000	1165
M27	1010	1400	1705
M30	1380	1950	2330
M33	2000	2800	3375
M36	2500	3550	4220
M39	2950	4200	4980
M42	4100	5800	6920
M45	5000	7100	8440
M48	6000	8400	10100
M52	7600	10700	12800
M56	9800	13800	16540
M60	11900	16800	20200
M68	17600	24700	29700
M76	24900	35100	42100
M80	29300	41200	49400

Fissaggio con flangia

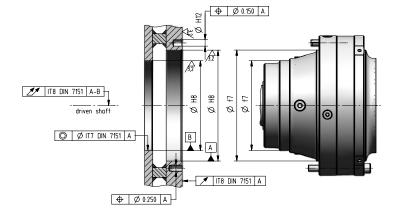
Per gli accoppiamenti scanalati impiegare adeguati prodotti lubrificanti.

Per lavorare l'albero azionato, riferirsi alle dimensioni indicate al cap. 4 del cat. EP.

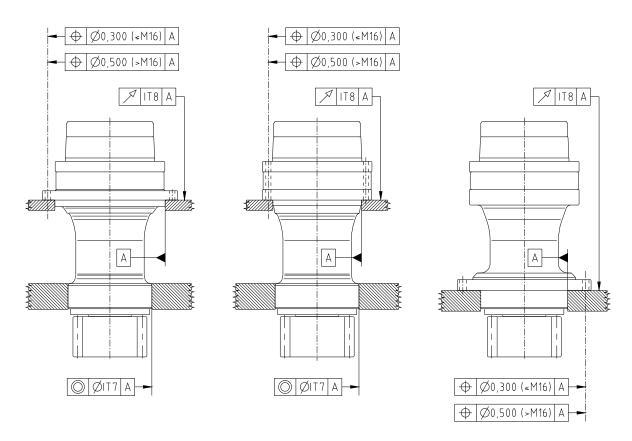
Prima di procedere al montaggio, assicurarsi di avere pulito accuratamente le superfici di contatto.

In presenza di carichi radiali esterni o di coppie richieste $M_2 \ge 0.7 \times M_{N_2}$, applicare adesivi di bloccaggio.

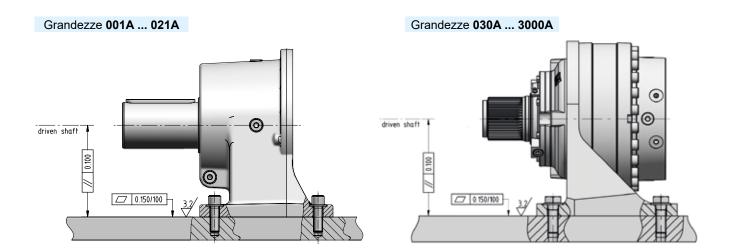
Stringere le viti secondo i valori indicati nella tabella della pagina precedente.


Per la lavorazione delle superfici di contatto, fare riferimento all'immagine in basso.

Solo per le grandezze 022A, 031A, 043A


I riduttori di queste dimensioni sono dotati di due raccordi. Se l'albero in uscita non è soggetto a carichi radiali o se i carichi radiali sono inferiori al 60% ammissibile, potrà essere utilizzato solo il centraggio di diametro maggiore.

Se sulla flangia del riduttore sono presenti spine elastiche, queste devono essere usate nell'accoppiamento con un telaio macchina di lunghezza equivalente al diametro.


Montaggio del riduttore con uscite per rotazione

Nel caso di riduttori con uscita per rotazioni (esecuzione di uscita R-S-H), per assicurare un funzionamento corretto e un eccelente trasferimento di potenza tra il riduttore e la macchina, il riduttore richiede una struttura di collegamento rigida in grado di sopportare i carichi radiali. Le tolleranze di posizione e di forma indicate di seguito devono essere rispettate.

5.5

Fissaggio con piedi

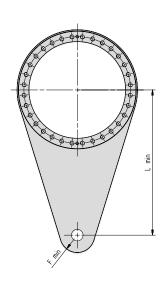
Sistemi di fissaggio pendolare

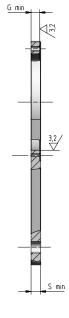
Nel fissaggio pendolare il motoriduttore deve essere sopportato radialmente e assialmente (anche per forme costruttive B5 ... B53, ved. cap. 6 del cat. EP) dal perno della macchina e ancorato contro la sola rotazione mediante un vincolo libero assialmente e con giochi di accoppiamento sufficienti a consentire le piccole oscillazioni, sempre presenti, senza generare pericolosi carichi supplementari sul riduttore stesso. Si consiglia di utilizzare il braccio di reazione in modo simmetrico rispetto all'albero a bassa velocità del riduttore perché, in questo modo, la reazione di coppia viene distribuita equamente sui due vincoli senza caricare i cuscinetti della

macchina. Precedere bussole elastiche adeguate e lubrificare con prodotti idonei le cerniere e le parti soggette a scorrimento. Lubrificare con prodotti adeguati le cerniere e le parti soggette a scorrimento.

Se vi sono pericoli per persone o cose derivanti da cadute o proiezioni del riduttore o di parti di esso, prevedere appropriate sicurezze contro l'allentamento o la rottura delle viti di fissaggio.

- rotazione o sfilamento del riduttore dall'estremità dell'albero della macchina azionata in seguito a rottura accidentale del dispositivo di reazione;
- · rottura accidentale dell'estremità dell'albero della macchina azionata


Attenzione! Per montaggi **verticali a soffitto**, e solo per riduttori dotati di anelli o bussola di bloccaggio, il sostentamento del riduttore è dovuto al solo attrito per cui è necessario prevedere un sistema di arresto.

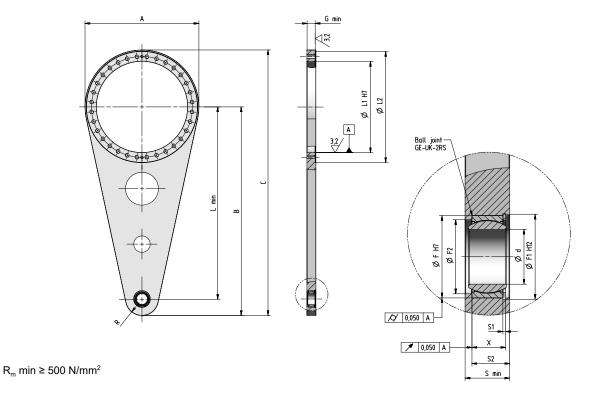

5.7

Braccio di reazione

Braccio di reazione asimmetrico senza cuscinetto sferico (dimensioni 001 ÷021)

Il braccio di reazione può essere applicato indistintamente a tutti i modelli **H, M** e **N**. Il braccio di reazione simmetrico è fornito come opzione standard (,TA - fino alla taglia 085A); se si desidera un braccio di reazione unilaterale, esso deve rispettare le dimensioni indicate di seguito.

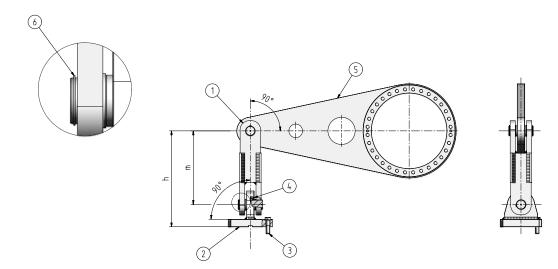
Grand.	L _{min}	G _{min}	S _{min}	F _{min}	∰ kg
001A	325	10	15	20	3
002A	325	10	15	20	3
003A	375	13	15	20	4
004A	375	13	15	20	4
006A	375	13	15	20	4
009A	450	18	20	30	8
012A	450	18	20	30	8
015A	450	18	20	30	8
018A	550	23	25	35	16
021A	550	23	25	35	16

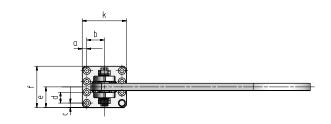

Braccio di reazione asimmetrico con cuscinetto a sfere (grand. 030A-3000A)

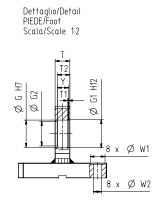
Le uscite H e M possono essere prese in considerazione con un fissaggio rigido dell'albero.

Le uscite del tipo T sono da considerarsi meno rigide a causa del collegamento dell'albero scanalato e del gioco di montaggio.

Le uscite H e M sono da preferire solo quando sono soddisfatte le seguenti condizioni:

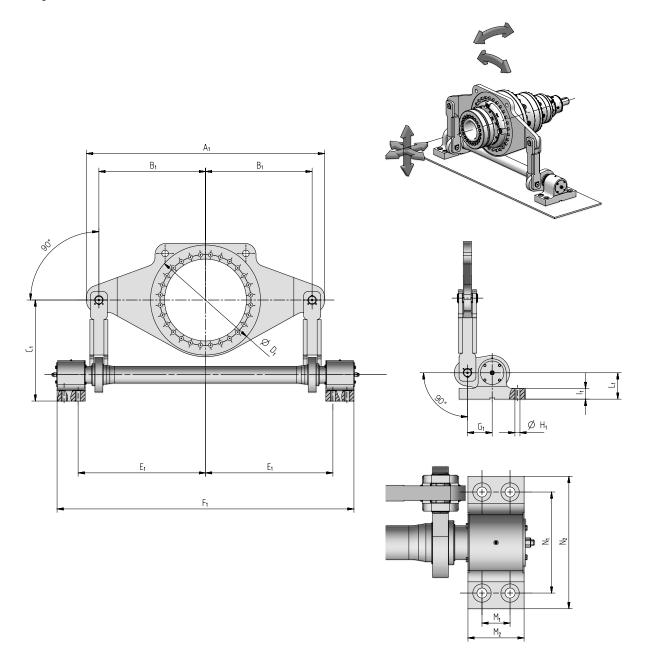

- montaggio dell'albero quando il riduttore sostiene masse sporgenti, ad esempio unità combinate EP+G+motore ed eventuali accessori su base di supporto, e con elevati momenti flettenti
- · applicazioni in cui si desidera ridurre al minimo il valore del gioco
- in presenza di condizioni di esercizio gravose, frequenti inversioni di marcia, ambienti polverosi e particolarmente aggressivi
- · elevata affidabilità nel corso degli anni




Grand.	L _{min}	В	Α	С	R	G _{min}	S _{min}	S1	S2	X	F	F1	d mm	Cuscinetti a sfere Schaeffler	F2	L1	L2	∰ kg
030	600	655	360	835	55	28	30	2,15	25	22,2	47	58	35	GE35-UK-2RS	54	285	354	28
042	700	762	420	972	62	33	35	2,15	28,5	24,2	62	65	40	GE40-UK-2RS	54	340	412	43
060	800	862	455	1 089,5	62	33	35	2,15	28,5	24,2	62	65	40	GE40-UK-2RS	54	365	447	56
085	900	968	520	1 228	68	38	40	2,65	32,5	27,7	68	71	45	GE45-UK-2RS	62	425	510	77
125	1 000	1 075	585	1 367,5	75	41	45	2,65	36,5	30,7	75	78	50	GE50-UK-2RS	67	470	572	113
180	1 100	1 190	645	1 512,5	90	45	50	3,15	39,2	43	90	93,5	60	GE60-UK-2RS	82	520	633	145
250	1 250	1 355	730	1 720	105	55	60	4,15	50	44,2	105	109	70	GE70-UK-2RS	95	585	718	235
355	1 400	1 520	830	1 935	120	60	65	4,15	55	49,2	120	124	80	GE80-UK-2RS	108	665	810	315
500	1 550	1 680	910	2 135	130	65	70	4,15	60	54,2	130	134	90	GE90-UK-2RS	120	730	890	410
710	1 700	1 850	1 000	2 350	150	75	80	4,15	67,5	59,2	150	155	100	GE100-UK-2RS	135	810	977	562
1060	2200	2360	1240	2980	160	75	80	4,15	67,5	59,2	160	165	110	GE110-UK-2RS	147	1000	1210	900
1500	2500	2680	1400	3380	180	80	90	4,15	80	74,2	180	185	120	GE120-UK-2RS	163	1150	1370	1380
2120	2800	3010	1600	3810	210	90	100	5,15	85	75,5	210	216	140	GE140-UK-2RS	185	1320	1570	1950
3000	3200	3430	1820	4340	230	100	110	5,15	95	85,2	230	236	160	GE160-UK-2RS	210	1500	1785	2770

Piede del braccio di reazione asimmetrico

Di seguito sono riportate le dimensioni consigliate per le staffe di collegamento a terra del braccio di reazione. Soluzioni personalizzate su richiesta.



Articolo	Descrizione
1 2	Asta di collegamento
3	Vite UNI 5739
4 5 6	Cuscinetto a sfere GE-UK-2RS Braccio di reazione Anello elastico DIN 7435

	Grand.	m	h	С	d	е	f	а	b	k	G	G1	G2	W1	W2	Vite	T1	T2	Т	Υ
ı	030	250	340	25	45	92,5	185	25	67,5	185	55	58	47	38	20	M18 10.9 - 8x	2,15	25	30	22,2
	042	295	400	27,5	55	110	220	27,5	80	215	62	65	54	45	24	M22 10.9 - 8x	2,15	28,5	35	24,2
	060	315	420	27,5	55	110	220	27,5	80	215	62	65	54	45	24	M22 10.9 - 8x	2,15	28,5	35	24,2
	085	360	480	30	60	120	240	30	92,5	245	68	71	62	50	26	M24 10.9 - 8x	2,65	32,5	40	27,7
	125	400	535	35	62,5	128,75	257,5	32,5	102,5	270	75	78	67	55	30	M27 10.9 - 8x	2,65	36,5	45	30,7
	180	485	645	37,5	75	150	300	37,5	122,5	320	90	93,5	82	65	33	M30 10.9 - 8x	3,15	43	50	39,2
	250	560	740	40	90	175	350	40	140	360	105	109	95	65	36	M33 10.9 - 8x	4,15	50	60	44,2
	355	650	845	40	95	182,5	365	40	155	390	120	124	108	65	36	M33 10.9 - 8x	4,15	55	65	49,2
	500	725	948,5	50	110	215	450	50	175	450	130	134	120	80	42	M39 10.9 - 8x	4,15	60	70	54,2
	710	800	1050	52,5	125	240	480	55	195	500	150	155	135	85	45	M42 10.9 - 8x	4,15	67,5	80	59,2
	1060	900	1165	52,5	100	252,5	505	55	200	510	160	165	147	85	45	M42 10.9 - 10x	4,15	67,5	80	59,2
	1500	1030	1330	60	107,5	275	550	60	220	560	180	185	163	90	48	M42 10.9 - 10x	4,15	80	90	74,2
	2120	1200	1550	65	125	315	630	67,5	252,5	630	210	216	185	100	52	M42 10.9 - 10x	5,15	85	100	75,5
	3000	1350	1750	80	140	365	730	75	290	730	230	236	210	120	62	M42 10.9 - 10x	5,15	95	110	85,2

Gruppo di bracci dinamici per la flessibilità del sistema

Braccio di reazione con doppio fulcro e barra di torsione fissata a terra, consente al riduttore di seguire i movimenti dell'albero condotto durante il funzionamento e offre una reazione elastica in grado di assorbire i sovraccarichi di torsione del momento. I valori di spostamento consentiti sono indicati nella figura, sono funzione delle grandezze e devono essere verificati durante la selezione degli accessori.

Grand.	A ₁	B ₁	C ₁	D ₁	E ₁	F ₁	G ₁	H ₁	I ₁	L ₁	M ₁	M ₂	N ₁	N ₂
250	1670	750	700	730	888.5	2041	165	39	55	170	84	180	157.5	157.5
355	1870	850	860	820	1000	2300	175	45	80	195	100	200	350	450
500	2120	950	900	880	1135	2645	220	45	70	229	125	250	450	590
710	2346	1063	1060	980	1248	2871	220	45	95	235	125	250	450	590
1060	2750	1250	1250	1230	1443,5	3327	255	52	130	300	150	290	530	700
1500	3080	1360	1350	1390	1600	3673	280	62	130	300	158	315	560	750
2120	3520	1550	1500	1590	1794	4116	320	70	160	375	178	350	620	840
3000	3920	1750	1800	1800	1975	4770	360	86	200	500	280	540	760	1120

Fissaggio pendolare

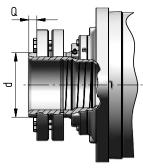
Prima di procedere al montaggio, pulire bene e lubrificare le superfici di contatto per evitare il grippaggio e l'ossidazione di contatto, ad eccezione del montaggio dell'albero cavo (ved. sotto).

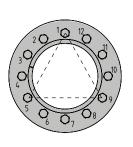
Per le estremità d'albero del tipo M, S + WF, T + WT utilizzare le viti e i momenti di serraggio come indicato a al cap. 5.2 pag. 15.

Attenzione! Le operazioni di montaggio e smontaggio devono essere eseguite con estrattori e viti di sollevamento utilizzando i fori filettati presenti all'estremità dell'albero (vedere cap. "Montaggio dei componenti all'estremità dell'albero") facendo attenzione ad evitare urti e colpi che potrebbero danneggiare irrimediabilmente i cuscinetti, gli anelli elatici o altre parti.

5.9

Montaggio ad albero cavo con unità di bloccaggio

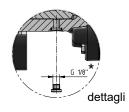

Per il perno delle macchine sul quale va calettato l'albero cavo del riduttore, seguire le indicazioni riportate al cat. EP.


Installazione

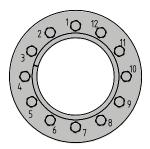
Se l'unità di bloccaggio non è fornita da noi, seguite scrupolosamente le istruzioni del produttore.

Durante il calettamento dell'unità di bloccaggio fornita da Rossi, procedere come segue:

- sgrassare accuratamente le superfici dell'albero cavo e del perno macchina da accoppiare
- montare il calettatore sull'albero cavo del riduttore lubrificando prima solo la superficie esterna dell'albero cavo; fare attenzione a posizionare assialmente il calettatore alla quota "Q" indicata nella tabella seguente (valori validi solo per il nostro calettatore)
- stringere leggermente un primo gruppo di tre viti posizionate a circa 120° come mostrato ad esempio in figura



Grand.	d	Q	Grand.	d	Q
001A	55	8	042A	165	10
002A	62	8	060A	185	10
003A	68	10	085A	200	10
004A	80	15	125A	240	13,5
006A	90	8	180A	260	13
009A	100	14	250A	300	16
012A	115	13	355A	340	15
015A	120	13	500A	360	15
015A	125	18	710A	420	15
018A	130	13	1060A	500	25
021A	130	13	1500A	560	25
030A	155	10	2120A	620	30
			3000A	750	58


• montare il riduttore sull'estremità dell'albero della macchina; inserire l'albero lentamente per consentire la fuoriuscita dell'aria (a partire dalla grandezza 030A, aprire il tappo situato sull'albero, vedi sotto)

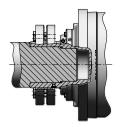
* Valido per: G 1/8" ≤ 710 G 1/4" 1060 - 1500 G 3/8" 2120 - 3000

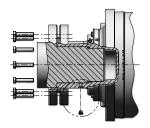
- serrare con chiave dinamometrica le viti dell'unità di bloccaggio in modo graduale e uniforme al valore di momento torcente indicato nella tabella sotto, con seguenza continua (non in croce) facendo ¼ di giro alla volta fino al raggiungimento del momento di serraggio prescritto;
- continuare ad applicare un momento torcente eccedente per 1 o 2 ulteriori fasi e alla fine verificare il momento di serraggio del bullone:
- · in presenza di circli gravosi di lavoro, con freguenti inversioni del moto, verificare nuovamente dopo alcune ore di funzionamento, il momento di serraggio delle viti.

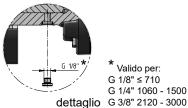
Grand.	Codice	vite	quantità	T serraggio [N m]
001A	SD055	M6	8	12
002A	SD062	M8	6	30
003A	SD068	M8	6	30
004A	SD080	M8	8	30
006A	SD090	M8	10	30
009A	SD100	M8	12	30
012A	SD115	M10	10	59
015A	SD120	M10	12	59
015A	SD125	M12	12	100
018A	SD130	M12	10	100
021A	SD130	M12	10	100
030A	SD155	M12	15	100

Grand.	Codice	vite	quantità	T serraggio [N m]
042A	SD165	M16	10	250
060A	SD185	M16	15	250
085A	SD200	M16	15	250
125A	SD240	M20	15	490
180A	SD260	M20	18	490
250A	SD300	M20	22	490
355A	SD340	M24	20	840
500A	SD360	M24	22	840
710A	SD420	M24	30	840
1060A	SD500	M30	20	1970
1500A	SD560	M30	24	1970
2120A	SD620	M30	30	1970
3000A	SD750	M33	32	

Smontaggio




Non rimuovere completamente le viti di fissaggio prima di avere disimpegnato gli anelli di bloccaggio. Rischio di lesioni gravi!!!


Pulire tutte le zone ossidate.

Allentare le viti di fissaggio una dopo l'altra solo con circa ½ giro alla volta e in sequenza continua (non incrociata), fino a quando il calettatore può essere spostato sull'albero cavo.

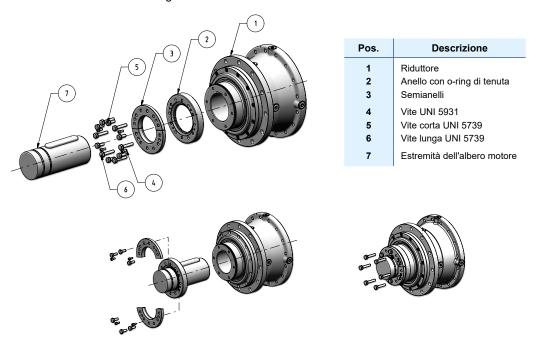
Rimuovere l'albero o il riduttore del cliente. Per grand. superiori a 030A per facilitare lo smontaggio, è possibile iniettare olio a bassa pressione attraverso un foro filettato posizionato sull'albero cavo (ved. sotto).

Valido per: G 1/8" ≤ 710 G 1/4" 1060 - 1500

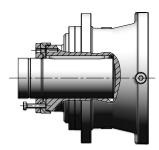
Le uscite a "T" possono essere utilizzate sia per il montaggio dell'albero del riduttore, accoppiandolo all'albero pieno scanalato, sia per l'accoppiamento a una flangia ruota piena scanalata.

Per il montaggio dell'uscita a "T" su una flangia ruota piena scanalata, seguire attentamente le seguenti istruzioni:

- rimuovere i tappi metallici posizionati sui fori delle flange delle ruote scanalate, predisposti per le viti di fissaggio
- Lubrificare accuratamente le parti scanalate con grasso per applicazioni industriali con carichi pesanti e di lunga durata.
- inserire la tenuta ad O-ring sull'albero della flangia
- (in caso di montaggio con flangia ruota) orientare l'accessorio prima del montaggio; identificare il dente dell'albero scanalato con il relativo incavo posizionato sull'albero del riduttore. Dente e vano fasati sono identificati da un foro come da figura.
- inserire lentamente l'albero scanalato in modo da avere un'uscita dell'aria
- montare radialmente il coperchio, comprimendo l'O-ring
- avvitare a croce le viti di serraggio dei semianelli avendo cura di serrare alla relativa coppia di serraggio
- chiudere i fori della flangia ruota scanalata con i tappi



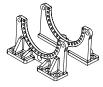
In caso di uscita N, seguire le istruzioni seguenti:


Installazione

- rimuovere la chiave sull'estremità dell'albero della macchina (numero 7).
- sistemare l'o-ring e l'anello (numero 2) sull'albero della macchina tra la sede della chiave e l'incavo circolare per il bloccaggio assiale. Disporre l'o-ring nella sede dell'anello
- installare la chiave sull'estremità dell'albero macchina e appliare Kluberpaste MR401 (o simile) sull'estremità dell'albero macchina.
- installare il riduttore (numero 1) per tutta la lunghezza della cava per chiavetta, avendo cura di avere lo spazio necessario per installare i semianelli
- Înserire i semianelli (numero 3) nell'incavo dell'estremità dell'albero della macchina. Assemblare l'anello (numero 2) con le viti corte UNI 5931 (numero 4) e le viti di media lunghezza UNI 5739. Serrare leggermente un primo gruppo di tre viti posizionate a circa 120°. Serrare gradualmente e uniformemente le viti con la chiave dinamometrica.
- Una volta posizionato il sistema di bloccaggio, non deve essere osservato alcun movimento assiale; in caso contrario, verificare le dimensioni dei componenti o contattare la Rossi S.p.A. prima di effettuare altre operazioni.
- dopo il controllo del bloccaggio assiale (come sopra), assemblare i riduttori con il sistema di bloccaggio utilizzando le viti lunghe UNI 5739 secondo il tipo di vite e il momento di serraggio della classe. Serrare leggermente un primo gruppo di tre viti posizionate a circa 120°. Serrare gradualmente e uniformemente le viti con la chiave dinamometrica.

Smontaggio

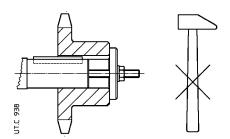
- · Pulire tutte le aree ossidate
- Rimuovere tutte le viti di fissaggio della UNI 5739.
- Inserire le viti lunghe UNI 5739 nei fori precedentemente occupati dalle viti medie UNI 5739 e utilizzarle come estrattore per smontare il riduttore dall'albero condotto.



Montaggio degli accessori

Pulire accuratamente le superfici di accoppiamento, applicare gli adesivi di bloccaggio (consigliati solo con il braccio di reazione o la staffa a pedale) e assemblare l'accessorio al riduttore. Serrare le viti con una chiave dinamometrica ai valori indicati nelle tabelle seguenti.

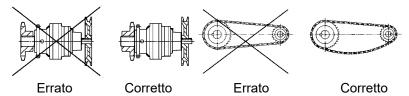
Braccio di reazione



1060A ... 3000A

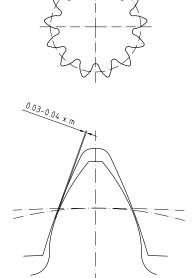
Codice		vite		rosetta	da	momento serraggio	
	d x l	classe	ISO	DIN	class	UNI	[Nm]
FB10e	M16x150	10.9	4762	-	-	-	300
FB10f	M16x160	10.9	4762	-	-	-	300
FB10g	M20x180	10.9	4762	-	-	-	560
FB10h	M20x200	10.9	4762	-	-	-	560
FB10i	M24x220	10.9	4014	6916	-	-	1000
FB10j	M24x240	10.9	4014	6916	-	-	1000
FB10k	M30x280	10.9	4014	6916	-	-	1950
FB10I	M30x320	10.9	4014	6916	-	-	1950
FB10m	M36x340	10.9	4014	6916	-	-	3550
FB10n	M36x380	10.9	4014	6916	-	-	3550
	b	orchie					
FB10o	M42x630 (x18) M42x490 (x14)	10.9	ISO 888:2012 ISO 4759-1	6916	10	5588	5800
FB10p	M42x700 (x22) M42x540 (x18)	10.9	ISO 888:2012 ISO 4759-1	6916	10	5588	5800
FB10q	M48x800 (x22) M48x620 (x18)	10.9	ISO 888:2012 ISO 4759-1	6916	10	5588	8400
FB10r	M56x910 (x20) M56x700 (x16)	10.9	ISO 888:2012 ISO 4759-1	6916	10	5588	13800

Montaggio dei componenti sull'estremità dell'albero



Si raccomanda di lavorare il foro dei componenti con chiavetta per le estremità d'albero cilindriche (spigot per le estremità d'albero scanalate) come indicato nel catalogo EP. Prima del montaggio, pulire accuratamente le superfici di accoppiamento e lubrificare contro il grippaggio e la corrosione da sfregamento. Attenzione! Il montaggio e lo smontaggio devono essere effettuati con l'ausilio di tiranti ed estrattori servendosi dei fori filettati in testa all'estremità d'albero avendo cura di evitare impatti ed urti che potrebbero irrimediabilmente danneggaire i cuscinetti , gli anelli elastici e altre parti. Per gli accoppiamenti H7/m6, K7/k6 e K7/m6 si consiglia di preriscaldare il pezzo da chiavare a una temperatura di 80 ÷ 100 °C.

Per gli accoppiamenti scanalati, applicare grasso o pasta adeguati. I giunti con velocità periferica sul diametro esterno fino a 20 m/s devono essere equilibrati staticamente; per velocità periferiche superiori occorre effettuare l'equilibratura dinamica.


Quando il collegamento tra riduttore e macchina o motore è realizzato con una trasmissione che genera carichi sull'estremità d'albero (ved. fig. sotto), assicurarsi che i carichi non eccedano i valori indicati in catalogo:

- · lo sbalzo della trasmissione sia ridotto al minimo;
- · le trasmissioni a ingranaggi non abbiano punti senza gioco;
- le catene di trasmissione non devono essere tese (se necessario carichi e/o movimenti alternati prevedere appositi tendicatena)
- · le trasmissioni a cinghia non siano eccessivamente tese.

Pignone

Quando un pignone è montato sull'albero di uscita, è necessario controllare il valore del gioco con il cuscinetto o la cremagliera corrispondente per ottenere un ingranaggio corretto (vedere sotto).

Codice	m	z	α	х	d _a	d f	k	Wk		ge di ranza
R002CA	8	11	20	0,5	109,5	77,33	2	39,394	-0,038	-0,076
R002BB	6	12	20	0,5	89,5	64,00	3	47,342	-0,034	-0,068
R002BC	6	13	20	0,5	95,5	70,00	3	47,427	-0,034	-0,068
R002BD	6	14	20	0,5	101,5	76,00	3	47,511	-0,034	-0,068
R002BE	6	15	20	0,5	107,5	82,00	3	47,595	-0,034	-0,068
R002AF	5	16	20	0,5	94,5	73,33	3	39,732	-0,034	-0,068
R006DA	10	11	20	0,5	139	96,67	2	49,243	-0,038	-0,076
R006DB	10	12	20	0,5	149	106,67	3	78,904	-0,038	-0,076
R006CC	8	13	20	0,5	127	93,33	3	63,235	-0,038	-0,076
R006CD	8	14	20	0,5	135	101,33	3	63,347	-0,038	-0,076
R006CE	8	15	20	0,5	143	109,33	3	63,459	-0,038	-0,076
R006CF	8	16	20	0,5	149,5	117,33	3	63,571	-0,041	-0,082
R012FA	14	11	20	0,5	194,5	135,33	2	68,940	-0,047	-0,094
R012EB	12	12	20	0,5	179	128,00	3	94,685	-0,047	-0,094
R012EC	12	13	20	0,5	191	140,00	3	94,853	-0,047	-0,094
R012DD	10	14	20	0,5	169	126,67	3	79,184	-0,041	-0,082
R012DE	10	15	20	0,5	179	136,67	3	79,324	-0,041	-0,082
R012DF	10	16	20	0,5	189	146,67	3	79,464	-0,041	-0,082
R018GA	16	11	20	0,5	222,5	154,67	2	78,788	-0,047	-0,094
R018FB	14	12	20	0,5	208,5	149,33	3	110,466	-0,047	-0,094
R018FC	14	13	20	0,5	222,5	163,33	3	110,662	-0,047	-0,094
R018ED	12	14	20	0,5	203	152,00	3	95,021	-0,047	-0,094
R018EE	12	15	20	0,5	215	164,00	3	95,189	-0,047	-0,094
R018EF	12	16	20	0,5	227	176,00	3	95,357	-0,047	-0,094

Nota: Definizioni in base alla norma DIN 3960.

Ingrassaggio dell'albero scanalato

Quando il pignone viene fornito separatamente dal riduttore, prima di inserirlo nell'albero, lubrificare l'albero scanalato con grasso anticorrosione per evitare qualsiasi processo di corrosione da contatto. Eseguire questa operazione solo alla prima messa in funzione.

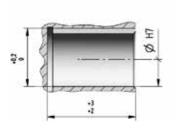
Regolazione del gioco

In presenza di un centraggio eccentrico, l'azione di ingranamento tra pignone e cremagliera è regolata dalla rotazione del riduttore all'interno della sua sede sulla macchina.

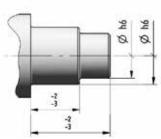
Il punto di massima eccentricità del centraggio è dato da un piccolo foro o da una piccola fresatura ottenuta sul supporto di uscita.

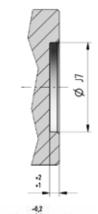
Per regolare il gioco d'ingranaggio, si consiglia di porsi nella condizione iniziale di gioco minimo, che si può ottenere facendo coincidere il punto di massima eccentricità con il lato del riduttore:

- · verso il centro della cremagliera in caso di ingranaggio interno;
- a 180° rispetto al centro della cremagliera nel caso di **ingranaggio esterno**.

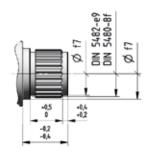

In questa condizione il gioco non deve essere inferiore a 0,03 ÷ 0,04 x m.

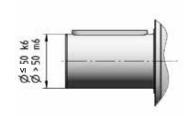
È inoltre consigliabile che il gioco misurato rientri nell'intervallo raccomandato dal produttore.

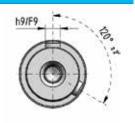

Si consiglia di misurare il gioco utilizzando spessori calibrati.

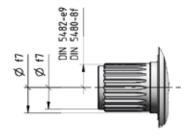

Per la lubrificazione di pignone e cremagliera, utilizzare solo grasso di alta qualità adatto alla lubrificazione di ingranaggi sottoposti a carichi elevati, come GADUS S5 T460 1,5 Shell.

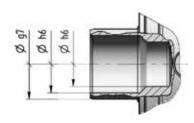
Tolleranze di accoppiamento consigliate

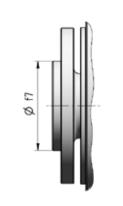


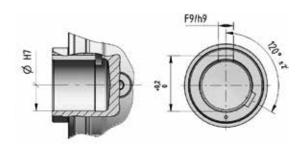


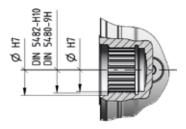


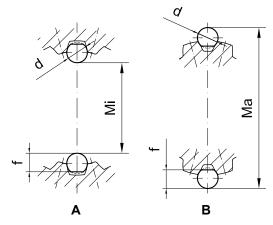



Uscita

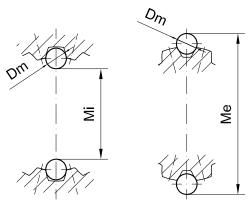

Tolleranze dell'estremità d'albero del riduttore







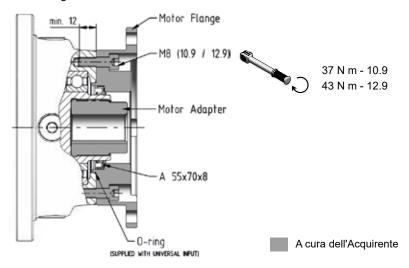
Installazione 5


Tolleranze secondo ISO 286

m	m	e7	f7	g6	g7	h6	h9	k6	m6	E6	F6	F9	G7	H6	H7	J7
da	1	-0,014	-0,006	-0,002	-0,002	0	0	+0,006	+0,008	+0,020	+0,012	+0,031	+0,012	+0,006	+0,010	+0,004
to	3	-0,024	-0,016	-0,008	-0,012	-0,006	-0,025	0	+0,002	+0,014	+0,006	+0,006	+0,002	0	0	-0,006
>	3	-0,020	-0,010	-0,004	-0,004	0	0	+0,009	+0,012	+0,028	+0,018	+0,040	+0,016	+0,008	+0,012	+0,006
to	6	-0,032	-0,022	-0,012	-0,016	-0,008	-0,030	+0,001	+0,004	+0,020	+0,010	+0,010	+0,004	0	0	-0,006
>	6	-0,025	-0,013	-0,005	-0,005	0	0	+0,010	+0,015	+0,034	+0,022	+0,049	+0,020	+0,009	+0,015	+0,008
to	10	-0,040	-0,028	-0,014	-0,020	-0,009	-0,036	+0,001	+0,006	+0,025	+0,013	+0,013	+0,005	0	0	-0,007
>	10	-0,032	-0,016	-0,006	-0,006	0	0	+0,012	+0,018	+0,043	+0,027	+0,059	+0,024	+0,011	+0,018	+0,010
to	18	-0,050	-0,034	-0,017	-0,024	-0,011	-0,043	+0,001	+0,007	+0,032	+0,016	+0,016	+0,006	0	0	-0,008
>	18	-0,040	-0,020	-0,007	-0,007	0	0	+0,015	+0,021	+0,053	+0,033	+0,072	+0,028	+0,013	+0,021	+0,012
to	30	-0,061	-0,041	-0,020	-0,028	-0,013	-0,052	+0,002	+0,008	+0,040	+0,020	+0,020	+0,007	0	0	-0,009
>	30	-0,050	-0,025	-0,009	-0,009	0	0	+0,018	+0,025	+0,066	+0,041	+0,087	+0,034	+0,016	+0,025	+0,014
to	50	-0,075	-0,050	-0,025	-0,034	-0,016	-0,062	+0,002	+0,009	+0,050	+0,025	+0,025	+0,009	0	0	-0,011
>	50	-0,060	-0,030	-0,010	-0,010	0	0	+0,021	+0,030	+0,079	+0,049	+0,104	+0,040	+0,019	+0,030	+0,018
to	80	-0,090	-0,060	-0,029	-0,040	-0,019	-0,074	+0,002	+0,011	+0,060	+0,030	+0,030	+0,010	0	0	-0,012
>	80	-0,072	-0,036	-0,012	-0,012	0	0	+0,025	+0,035	+0,094	+0,058	+0,123	+0,047	+0,022	+0,035	+0,022
to	120	-0,107	-0,071	-0,034	-0,047	-0,022	-0,087	+0,003	+0,013	+0,072	+0,036	+0,036	+0,012	0	0	-0,013
>	120	-0,085	-0,043	-0,014	-0,014	0	0	+0,028	+0,040	+0,110	+0,068	+0,143	+0,054	+0,025	+0,040	+0,026
to	180	-0,125	-0,083	-0,039	-0,054	-0,025	-0,100	+0,003	+0,015	+0,085	+0,043	+0,043	+0,014	0	0	-0,014
>	180	-0,100	-0,050	-0,015	-0,015	0	0	+0,033	+0,046	+0,129	+0,079	+0,165	+0,061	+0,029	+0,046	+0,030
to	250	-0,146	-0,096	-0,044	-0,061	-0,029	-0,115	+0,004	+0,017	+0,100	+0,050	+0,050	+0,015	0	0	-0,016
>	250	-0,110	-0,056	-0,017	-0,017	0	0	+0,036	+0,052	+0,142	+0,088	+0,186	+0,069	+0,032	+0,052	-0,036
to	315	-0,162	-0,108	-0,049	-0,069	-0,032	-0,130	+0,004	+0,020	+0,110	+0,056	+0,056	+0,017	0	0	-0,016
>	315	-0,125	-0,062	-0,018	-0,018	0	0	+0,040	+0,057	+0,161	+0,098	+0,202	+0,075	+0,036	+0,057	+0,039
to	400	-0,182	-0,119	-0,054	-0,075	-0,036	-0,140	+0,004	+0,021	+0,125	+0,062	+0,062	+0,018	0	0	-0,018
>	400	-0,135	-0,068	-0,020	-0,018	0	0	+0,045	+0,063	+0,165	+0,102	+0,223	+0,083	+0,040	+0,063	+0,043
to	500	-0,198	-0,131	-0,060	-0,081	-0,040	-0,155	+0,005	+0,023	+0,125	+0,062	+0,068	+0,020	0	0	-0,020
>	500	-0,145	-0,076	-0,022	-	0	0	+0,044	+0,07	+0,189	+0,12	+0,251	+0,092	+0,044	+0,07	-
to	630	-0,215	-0,146	-0,066	-	-0,044	-0,175	0	+0,026	+0,145	+0,076	+0,076	+0,022	0	0	-

Alberi scanalati - misura su perni

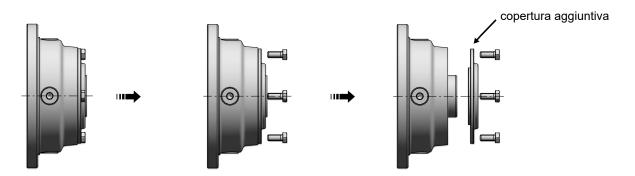
DIN 5482	femmina	m	z	d	f		Mi -	Ма
	maschio			pin	pin	tolleranza	max	min
40x36	Α	1,9	20	3,5	3,2	H10	32,712	32,612
40,000	В	1,5	20	3,5	-	e9	43,281	43,235
45x41	Α	2	22	4	3,6	H10	36,709	36,610
40.41	В	_	22	3,5	-	e9	48,631	48,591
50x45	Α	2	24	3,5	3,2	H10	42,515	42,433
30X 4 3	В	_	24	3,5	-	e9	52,635	52,594
58x53	A B	2	27	3,5	-	H10	49,967	49,881
30,00	В	_	21	3,5	-	e9	59,818	59,772
62x57	Α	2,1	29	4	3,7	H10	53,405	53,317
02337	В	۷,۱	23	3,5	-	e9	64,700	64,657
70x64	Α	2,1	32	4	-	H10	60,673	60,577
70004	В	۷,۱	52	4	-	e9	73,198	73,150
80x74	Α	2,1	36	4	-	H10	70,815	70,730
00774	В	۷,۱	30	4	-	e9	83,064	83,018
90x84	Α	2,25	40	3,5	-	H10	81,651	81,564
30004	В	2,23	40	4	3,7	e9	92,198	92,151
100x94	Α	2,25	44	3,5	-	H10	91,875	91,796
100334	В	2,23	7**	4	3,7	e9	102,245	102,201



NPer maggiori dettagli, consultare la letteratura specifica DIN 5482 o DIN 5480.

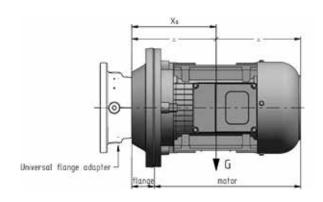
DIN 5480	femmina	m	z	Dm		Mi -	- Me
	maschio				tolleranza	max	min
120x3	N	3	38	5,5	9H	108,517	108,420
12000	w	J	00	6	8f	126,017	125,957
130x3	N	3	42	5,5	9H	118,466	118,365
10000	w	Ü		6	8f	136,248	136,185
150x5	N	5	28	10	9H	128,243	128,129
10000	w	J	20	10	8f	159,876	159,810
170x5	N	5	32	10	9H	148,247	148,134
17000	W	Ü	02	11	8f	182,675	182,609
200x5	N	5	38	10	9H	178,252	178,140
200/10	W	·		11	8f	212,812	212,745
220x5	N	5	42	10	9H	198,276	198,150
LLONG	w	Ü		11	8f	232,874	232,799
240x5	N	5	46	10	9H	218,278	218,152
2.000	W	·		11	8f	252,938	252,862
280x8	N	8	34	15	9H	247,640	247,500
	W	-		16	8f	296,909	296,830
300x8	N	8	36	15	9H	268,026	267,896
	W	-		16	8f	316,563	316,485
400x8	N	8	48	14	9H	371,155	371,033
	W N			16 14	8f 9H	416,356	416,278
460x8	W W	8	56	16	9H 8f	431,155 476,788	431,014 476,698
500.0	N	•		14	9H	470.997	470,856
500x8	w	8	61	16	8f	516,660	516,570
600×10	N	10	E0	18	9H	562,423	562,285
600x10	w	10	58	20	8f	620,635	620,547

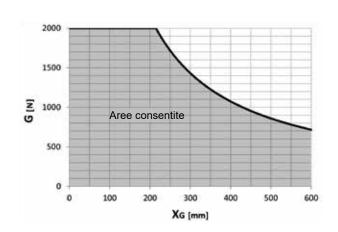
Adattatore flangia universale


L'adattatore di flangia in entrata universale permette al cliente di rendere le proprie flange e accoppiamenti idonei ai tipi principali di motorizzazione. E' molto importante osservare l'informazione mostrata nel disegno sottostante al fine di ottenere una corretta tenuta olio del riduttore. La flangia d'ingresso universale può essere utilizzata per motori con momento torcente massimo di 1 000 N m e peso come da tabella seguente.

I riduttori con ingresso "U" (non "UN" e "UH") vengono forniti con un coperchio aggiuntivo come illustrato di seguito. Quando è necessario utilizzare una flangia realizzata dal cliente, si prega di rimuoverla.

Prestare attenzione ai riduttori forniti di olio. Rimuovendo il coperchio potrebbe fuoriuscire dell'olio.




Quando è presente un adattatore di flangia universale, assicurarsi che il peso totale della flangia + motore e la distanza del loro centro di gravità siano conformi al seguente schema.

In caso di forti vibrazioni o sollecitazioni dinamiche, contattare Rossi S.p.A..

Pericolo di lesioni gravi a personi e cose.

7 1

Motori elettrici

Controllare le dimensioni di contatto (per le norme IEC 72-1 assicurarsi che le superfici di contatto sia lavorate in classe precisa (IEC 60072-1, UNEL 13501-69; DIN 42955)) – (per la norma NEMA riferirsi allo schema NEMA C-FACE);

- · pulire accuratamente le superficie di accoppiamento;
- controllare e, se necessario, abbassare la chiave parallela in modo da lasciare un gioco di 0,1 ÷ 0,2 mm tra la sua parte superiore e la parte inferiore della cava del foro. Se la linguetta dell'albero è senza battuta, bloccare la cava con una spina.
- lubrificare le superfici di accoppiamento contro l'ossidazione di contatto (Klüberpaste 46 MR 401 è raccomandata).
- inserire il motore fino a battuta sulla flangia del riduttore; questa operazione può essere facilitata posizionando verticalmente il riduttore con la flangia del motore montata verso l'alto;

Non forzare l'albero motore all'interno del giunto del riduttore. Pericolo di gravi lesioni.

- · verificare che il centraggio del motore sia nella relativa sede della flangia del riduttore
- controllare che la lunghezza delle viti sia sufficiente per avere un passo di 2 × sopra il dado
- serrare le viti di fissaggio del motore alla flangia del riduttore in modo da ottenere la coppia di serraggio indicata nella tabella seguente:

Bullone	Momento di serraggio
d	N m
∅	classe 8.8
M8	25
M10	56
M12	85
M14	135
M16	205

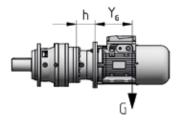
Massimo momento flessibile permissibile

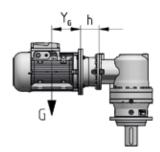
In caso di montaggio di motori forniti dal cliente, verificare che il momento flettente statico M_b generato dal peso del motore sulla controflangia del riduttore sia inferiore al valore consentito M_{bmax} , indicato nella tabella:

 $M_{\rm b} < M_{\rm bmax}$

dove:

 $M_b = G - (Y_G + h) / 1 000 [N m]$


G [N] peso del motore, quasi numericamente uguale alla massa del motore, espressa in kg, moltiplicata per 10


Y_G [mm] distanza del baricentro del motore dalla superficie della flangia

h [mm] forniti in tabella, in base alla dimensione del riduttore e alla dimensione del motore IEC

Motori eccessivamente lunghi e snelli, anche se con momenti flettenti inferiore ai limiti prescritti, possono generare durante il funzionamento vibrazioni anomale. In questi casi è opportuno prevedere una adeguata sopportazione ausiliaria del motore (ved. documentazione specifica del motore).

I carichi superiori ai carichi ammissibili possono essere presenti in applicazioni dinamiche in cui il motoriduttore è soggetto a traslazioni, rotazioni od oscillazioni: interpellarci per lo studio di ogni singolo caso.

Momento flettente $\mathbf{\textit{M}}_{bmax}$ e dimensione h

1EL	2EL	3EL	4EL	2EB	3EB	4EB	IEC	Codice	h	M _{bmax}
									mm	N m
							71	I14×160	52	
							80	l19×200	72	
8	001A 006A	22A	001A 061A	001A 006A	22A	001A 061A	90	124×200	72	
001A, 002A	. 00	001A 022A	8		001A 022A	. 06	100	I28×250	82	900
Ę.	₹	∀	≰	₹	₹	₹	112	I28×250	82	900
00	001	001	9	00	00	001	132	138×300	102	
							160	142×350	135	
							180	148×350	135	
							100	I28×250	103	
⋖	∢	∢	∢	∢	∢	∢	112	128×250	103	
003A 006A	009A 022A	030A 061A	085A 180A	009A 015A 022A	030A 043A	085A 125A	132	138×300	120	
-	-	:		722	:		160	142×350	153	2800
)3A	99A	30A	85A	98A	30A	85A	180	148×350	153	
8	ŏ	ö	õ	ŏ	ŏ	Õ	200	155×400	153	
							225	160×450	183	
							132	138×300	133,5	
⋖	∢	∢	∢	018A, 021A, 030A	_	₫	160	142×350	159	
009A 015A	030A 043A	085A 125A	250A 355A	, ,	060A, 085A	180A 250A	180	148×350	159	
:				217	Ą,	"	200	155×400	159	4500
96C	30A	85A	50 A	, A	090	80A	225	160×450	189	
8	ö	õ	Ñ	018		-	250	165×550	189	
							280	175×550	189	
							160	142×350	159	
⊴	∢			042A 061A	6	0A	180	148×350	159	
02,	.061	180A	500A	90 .	. 48	. 50	200	155×400	159	4500
018A, 021A	060A-061A	18	20		125A 180A	355A 500A	225	160×450	189	4500
70	90			042	125	355	250	165×550	189	
							280	175×550	189	
							160	142×350	111	
13A	085A 125A	5A	8	5A	5A	6	180	I48×350	111	
030A 043A		250A 355A	710A, 1060A	085A 125A	250A 355A	710A, 1060A	200	155×400	111	4500
: ≰	K	. ₹	Ą		. ₹	, A	225	160×450	141	4500
030	085	250	71(085	250	71(250	165×550	141	
							280	175×550	141	

7.2

Motori idraulici

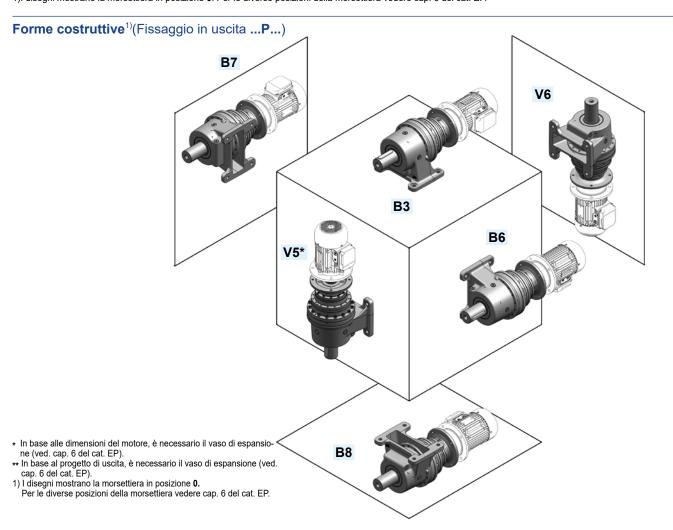
- controllare le dimensioni di accoppiamento
- pulire accuratamente le superfici di accoppiamento;
- assicurarsi che la guarnizione fornita (O-ring) con il motore idraulico sia correttamente inserita nella sua sede
- · lubrificare la superficie di accoppiamento contro l'ossidazione di contatto con un grasso o pasta adeguati.
- inserire il motore fino alla battuta sulla flangia del riduttore; questa operazione può essere facilitata posizionando verticalmente il riduttore con la flangia del motore montata verso l'alto

Non forzare l'albero motore all'interno del giunto del riduttore. Pericolo di gravi lesioni.

- Verificare che il centraggio del motore sia nella relativa sede della flangia del riduttore
- serrare le viti di fissaggio del motore alla flangia del riduttore in modo da ottenere un momento di serraggio adeguato;
- Utilizzare i bulloni 8.8 o superiori

001A ... 021A

Forme costruttive¹⁾(Fissaggio in uscita ...F..., ... A...)



- ∗In base alle dimensioni del motore, è necessario il vaso di espansione (vedere cap. 6 del cat. EP).

- **In base al progetto di uscita, è necessario il vaso di espansione (vedere cap. 6 del cat. EP).

 •Foro di riferimento per I individuazione della forma costruttiva.

 1)I disegni mostrano la morsettiera in posizione 0. Per le diverse posizioni della morsettiera vedere cap. 6 del cat. EP.

Quantità di olio 2)[1]

					1E	EL									2E	L									3E	L									4E	L				
Q_{R}	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A	001A	002A	003A	004A	006A	A600	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A
B3 B8			1,2	1,3	1,3	2	1,9	1,9	3	3,4	0,8	0,8	1,3	1,4	1,4	2,7	2,6	2,6	3,2	3,2	1									3,3										
V1, V5	0,8	0,8	1,5	1,6	1,4	2,5	2	2,1	3,9	4	1,1	1,2	2	2,2	2,1	3,9	3,9	3,9	5,1	5	1,5	1,5	2,3	2,5	2,3	4,5	4,4	4,4	5,8	5,8	1,8	1,8	2,6	2,8	2,6	4,8	4,8	4,8	6	6
V3, V6	1	1	1,9	2,1	2	2,9	2,8	2,9	4,3	5,2	1,3	1,3	2,1	2,3	2,3	4,1	4,3	4,3	4,8	4,7	1,6	1,7	2,2	2,4	2,2	3,9	4,1	4,1	4,8	4,8	1,8	1,9	2,5	2,7	2,5	4	4,3	4,3	4,8	4,8

2) Le quantità di olio indicate sono approssimative per l'approvvigionamento. Le quantità esatte di olio da immettere nel riduttore sono definite dal livello.

022A ... 3000A

Forme costruttive ¹⁾(Fissaggio in uscita ... F..., ... A...)

- *In base alle dimensioni del motore, è necessario il vaso di espansione (vedere cap. 6 del cat. EP).
 **In base al progetto di uscita, è necessario il vaso di espansione (vedere cap. 6 del cat. EP).
 •Foro di riferimento per I individuazione della forma costruttiva.

 1) I disegni mostrano la morsettiera in posizione 0. Per le diverse posizioni della morsettiera vedere cap. 6 del cat. EP.

Quantità di olio 2)[1]

			1EL						2	EL			
Q_{R}	022A	030A	031A	042A	043A	022A	030A	031A	042A	043A	060A 061A	085A	125A
B5	2,9	3,2		4,4		2,7		5,9			6,7	7,7	14
V1	3,6	5,2	8,1	7,5	10,2	3,9	6,2	9,2			10,6	14,1 15,4	24
V3	3,3	6,5	5	8,8	6	2,9	8,9	9,2 7,8	10,7	8,3	13,5	15,4	27

									3EL								
Q_{R}	72A	30A	31A	12A	13A	30A 31A	085A	25A	30A	50A	55A	∀	<u>₹</u>	60A	00A	20 A	3000A
	ö	ö	ö	ŏ	ó	22	õ	÷	~	ñ	સં	2(À	5	15	77	೫
B5	3,1	3,6	5,1	4,9	6,3	6,3	7,9 14,5	15	22 40	32	45	59	89	151	199	250	415
V1	5,5	6	9	8,7	11,5	11,4	14,5	27	40	60	86	114	174	301	397	439	830
V3	3,8	7,1	6,1	9,8	7,5	12,5	15,8	29	43	63	89	117	177	295	389	489	813

										4EL								
G) _R	022A	30A	31A	42A	43A	60A 61A	085A	25A	80A	50 A	55A	¥00	10A	060A	500A	120A	3000A
		0	0	0	0	0	00	0	_	_	7	ന	LC)	7	7	~	Ń	ñ
В	5	3,1	3,6	5,1	5	6,4	6,2	8,1	15	22	33 63	46	59	89	151	200	254	432
V	1	5,7	6,8	9,8	9,5	12,3	11,9	15,5	29	43	63	89	114	174	301	399	507	863
V	3	3,8	7,3	6,2	10	7,6	12,4	16,2	30	44	65	91	117	177	295	391	497	842

2) Le quantità di olio indicate sono approssimative per l'approvvigionamento. Le quantità esatte di olio da immettere nel riduttore sono definite dal livello.

001A ... 021A

Forme costruttive¹⁾(Fissaggio in uscita ... F..., ... A...)

Quantità di olio 2)[I]

						2E	В									3E	В									4E	В				
Q_{R}	00 1A		002A	003A	004A	006A	900A	012A	015A	018A	021A	001A	002A	003A	004A	006A	900A	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A
V3 V3	3 2,	7 2	2,8	4,4	4,5	4,4	8,2	8,3	8,3	14,3	14,3	3	3,1	3,7	3,8	3,6	6,1	6,3	6,3	6,8	6,8	3,3	3,3	3,9	4,1	3,9	5,4	5,6	5,6	6,2	6,2
B5, B53	1,5	5	1,5	2,5	2,5	2,5	4,7	4,6	4,6	8	8	1,7	1,7	2,1	2,2	2,1	3,7	3,6	3,6		4,3	1,8	1,8	2,2	2,3	2,2	3,3	3,3	3,3	4	4
B51	2,6	6 2	2,6	4,2	4,3	4,2	8	7,8	7,8	13,3	13,3	2,9	2,9	3,7	3,9	3,7	6,6	6,5	6,5	7,7 4,7	7,7	3,2	3,2	4	4,2	4	6,2	6,1	6,1	7,4	7,4
B52	1,8	3 /	1,9	3	3	3	5,6	5,6	5,6	9,8	9,8	2	2	2,4	2,5	2,4	4,2	4,1	4,1	4,7	4,8	2,1	2,1	2,5	2,6	2,5	3,6	3,6	3,6	4,3	4,3
V1 V1	3 1,9	9 /	1,9	3	3,1	3	5,7	5,5	5,5	9,4	9,4	2,2	2,2	3	3,2	3	5,4	5,4	5,4	6,5	6,6	2,5	2,5	3,3	3,5	3,3	5,5	5,4	5,4	6,7	6,7

²⁾ Le quantità di olio indicate sono approssimative per l'approvvigionamento. Le quantità esatte di olio da immettere nel riduttore sono definite dal livello.

[∗]In base alle dimensioni del motore, è necessario il vaso di espansione (vedere cap. 6 del cat. EP). ∗∗In base al progetto di uscita, è necessario il vaso di espansione (vedere cap. 6 del cat. EP).

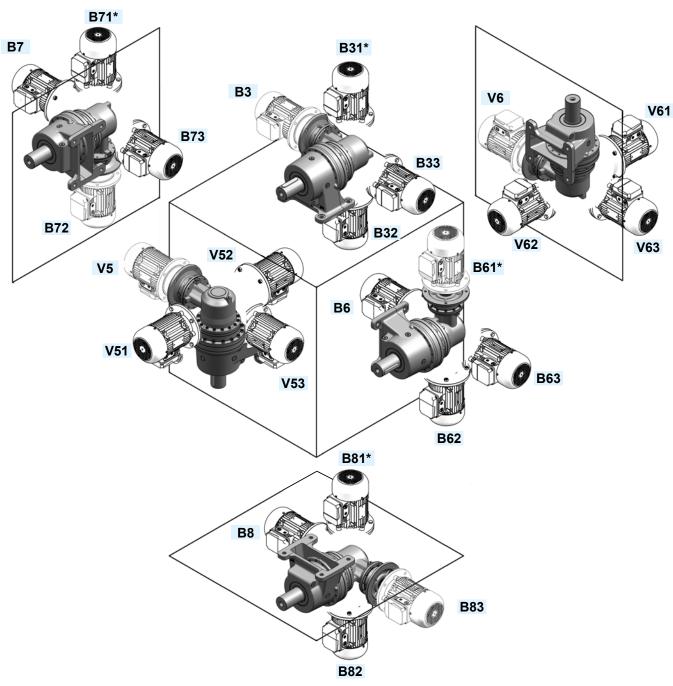
Foro di riferimento per l'individuazione della forma costruttiva.

1) I disegni mostrano la morsettiera in posizione **0.** Per le diverse posizioni della morsettiera vedere cap. 6 del cat. EP.

022A ... 3000A

Forme costruttive¹)(Fissaggio in uscita ... F..., ... A...)

Quantità di olio 2)[1]


					2E	В									3EB												4E	В								5E	В	
	Q_{R}	022A	030A	031A	042A	043A	060A 061A	085A	125A	022A	030A	031A	042A	043A	060A 061A	085A	125A	180A	250A	355A	022A	030A	031A	042A	043A	060A 061A	085A	125A	180A	250A	355A	500A	710A	1060A	1060A	1500A	2120A	3000A
V	3 V33	11,2	12,5	12,4	18,8	15,7	20	33,5	45	6,5	11	10	14,5	11,9	20,5	20,6	42	56	84	106	4,9	10,3	8,1	11,9	9,6	14,6	23,6	36	52	68	101	125	196	321	316	415	488	864
В	5, B53	6,8	6,3	8,2	9,4	10,4	10	16,8	23	4,4	5,5	7	7,3	8,5	10,2	10,3	21	28	42	53	3,6	5,1	6,1	6	7,4	7,3	11,8	18	26	34	51	63	98	161	158	208	244	432
B	51	12,5	9,9	16,5	18,8	20,8	20	33,5	44	8,1	9,9	12,9	13,2	15,9	19,1	19,2	38	52	82	104	6,8	9,8	11,7	11,5	14,3	14,2	22,9	32	50	66	98	122	194	321	316	415	488	864
B	52	7,6	8	8,2	9,4	10,4	10	16,8	27	4,9	6,3	7,8	8,2	9,3	11,1	11,2	21	44	46	57	4	5,4	6,4	6,3	7,7	7,6	12,2	18	26	34	51	63	102	192	175	225	275	463
V	I V13	10,1	7,8	10,6	13	15	14,2	20,5	31	6,9	7,5	10,5	10,8	13,5	14,8	16,7	34	52	70	92	6,1	8,5	10,4	10,2	13	12,9	20,3	32	46	64	93	118	182	391	316	415	488	864

²⁾ Le quantità di olio indicate sono approssimative per l'approvvigionamento. Le quantità esatte di olio da immettere nel riduttore sono definite dal livello.

[∗]In base alle dimensioni del motore, è necessario il vaso di espansione (vedere cap. 6 del cat. EP). ●Foro di riferimento per I individuazione della forma costruttiva. 1) I disegni mostrano la morsettiera in posizione **0.** Per le diverse posizioni della morsettiera vedere cap. 6 del cat. EP.

001A ... 021A

Forme costruttive 1)(Fissaggio in uscita ...P...)

Quantità di olio 2) [1]

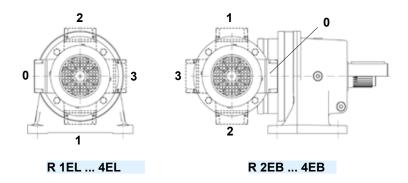
					2E	В									3E	В									4E	В				
Q_{R}	001A	002A	003A	004A	006A	900A	012A	015A	018A	021A	001A	002A	003A	004A	006A	900A	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A
B3 B8 B33 B83	1,5 1,5	, -					4,6 4,6			8 8		1,7 1,7		2,2 2,2			3,6 3,6				1,8 1,8			2,3 2,3		3,3 3,3		3,3 3,3	4 4	4
B31 B81 B32 B82	, -	, -	,	4,3 3	4,2 3	8 5,6				13,3 9,8				3,9 2,5									4 2,5	4,2 2,6	4 2,5	6,2 3,6		6,1 3,6	7,4 4,3	
V5 V53 V6 V63	1,9 2,7	1,9 2,8	3 4,4	3,1 4,5		5,7 8,2				9,4 14,3					3 3,6		5,4 6,3		6,5 6,8		2,5 3,3								6,7 6,2	

²⁾ Le quantità di olio indicate sono approssimative per l'approvvigionamento. Le quantità esatte di olio da immettere nel riduttore sono definite dal livello.

[∗]In base alle dimensioni del motore, è necessario il vaso di espansione (vedere cap. 6 del cat. EP).

1) I disegni mostrano la morsettiera in posizione 0. Per le diverse posizioni della morsettiera vedere cap. 6 del cat. EP.

001A ... 3000A - Posizioni scatola morsettiera


Se non diversamente indicato, i motoriduttori vengono forniti con la scatola morsettiera motore montata in posizione 0 dal lato ventola motore (ved. fi gura).

A richiesta, sono disponibili le posizioni 1, 2 e 3.

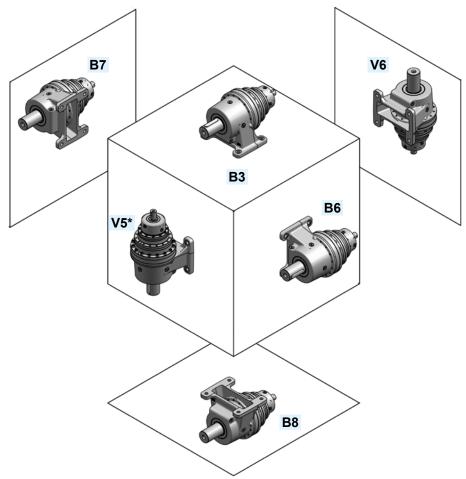
Codice per la designazione: ,TB0 (standard) ,TB1 ,TB2 ,TB3.

L'entrata cavi è a cura dell'Acquirente.

In posizione 1 per i coassiali e 2 per gli ortogonali, la scatola morsettiera può sporgere rispetto al piano di appoggio dei piedi. The following figures refer to mounting positions B3 - B5.

001A ... 021A

Forme costruttive (Fissaggio in uscita ... F..., ... A...)



- ∗In base alle dimensioni del riduttore e al tipo di ingresso, è necessario il vaso di espansione (vedere cap. 6 del cat. EP).
 ∗∗In base al tipo di uscita, è necessario il vaso di espansione (vedere cap. 6 del cat. EP).
 •Foro di riferimento per I individuazione della forma costruttiva.

Forme costruttive (Esecuzione ... P...)

*In base alle dimensioni del riduttore e al tipo di ingresso, è necessario il vaso di espansione (vedere cap. 6 del cat. EP).

Quantità di olio¹⁾[l]

					16	ĒL									2E	L									31	EL									4	ΞL				
Q_{R}	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A
B3 B8	0,7	0,7	1,4	1,4	1,2	2,2	2	2	3,1	3	0,8	0,8	1,3	1,3	1,2	2,5	2,5	2,5	3	3	1	1	1,4	1,5	1,4			2,5									2,6			
V1, V5	1,4	1,4	2,7	2,7	2,5	4,4	3,9	4	6,2	6,1	1,7	1,7	2,5	2,7	2,5	5	4,9	4,9	6,1	6	2	2	2,8	3	2,8	5	4,9	4,9	6,2	6,2	2,3	2,3	3,2	3,3	3,2	5,3	5,3	5,3	6,5	6,5
V3, V6	1	1,1	2,2	2,1	1,9	3,2	2,9	3	4,5	4,4	1,3	1,4	2	2,1	1,9	3,8	3,9	3,9	4,4	4,3	1,6	1,7	2,3	2,4	2,3	3,8	3,9	3,9	4,5	4,5	2	2	2,6	2,8	2,6	4,1	4,3	4,3	4,8	4,8

¹⁾ Le quantità di olio indicate sono approssimative per l'approvvigionamento. La quantità esatta di olio da immettere nel riduttore è definita dal livello.

022A ... 3000A

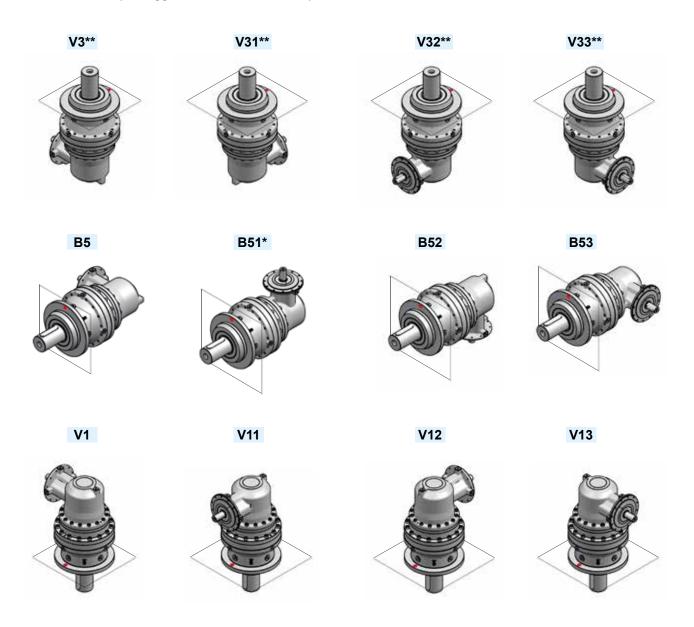
Forme costruttive (Fissaggio in uscita ...F..., ... A...)

Quantità di olio¹⁾[l]

				1EL						2	EL			
	Q_{R}	022A	030A	031A	042A	043A	022A	030A	031A	042A	043A	060A 061A	085A	125A
_					U				U			00		_
	B5	2,9	3,2	4,5	4,4	5,6	2,7	4,4	5,9	5,3	6,7	6,7	7,7	14
	V1	3,6	5,2	8,1	7,5	10,2	3,9	6,2	9,2	8	10,8	10,6	14,1	24
	V3	3,3	6,5	5	8,8	6	2,9	8,9	7,8	10,7	8,3	13,5	15,4	27

									3EL								
Q_{R}	22A	30A	31A	42A	43A	60A 61A	085A	25A	80A	50A	55A	400	40 ₹	60A	90 A	20 A	90 A
	Ö	ö	ö	ò	ò	88	õ	÷	÷	ñ	ñ	ũ	7	5	15	7	8
В5	3,1	3,6	5,1	4,9	6,3	6,3	7,9 14,5 15,8	15	22	32 60 63	45	59 114	89 174	151	199	250	415
V1	5,5	6	9	8,7	11,5	11,4	14,5	27	40	60	86	114	174	301	397	439	830
V3	3,8	7,1	6,1	9,8	7,5	12,5	15,8	29	43	63	89	117	177	295	389	489	813

										4EL								
G) _R	022A	30A	31A	42A	43A	60A 61A	085A	25A	80A	50 A	55A	¥00	10A	060A	500A	120A	3000A
		0	0	0	0	0	00	0	_	_	7	ന	LC)	7	7	~	Ń	ñ
В	5	3,1	3,6	5,1	5	6,4	6,2	8,1	15	22	33 63	46	59	89	151	200	254	432
V	1	5,7	6,8	9,8	9,5	12,3	11,9	15,5	29	43	63	89	114	174	301	399	507	863
V	3	3,8	7,3	6,2	10	7,6	12,4	16,2	30	44	65	91	117	177	295	391	497	842


¹⁾ Le quantità di olio indicate sono approssimative per l'approvvigionamento. La quantità esatta di olio da immettere nel riduttore è definita dal livello.

^{**}In base all progetto di uscita, è necessario il vaso di espansione (vedere cap. 6 del cat. EP)

* In base alle dimensioni del riduttore e al tipo di ingresso, è necessario il vaso di espansione (vedere cap. 6 del cat. EP). ●Foro di riferimento per I individuazione della forma costruttiva.

001A ... 021A

Forme costruttive (Fissaggio in uscita ...F..., ... A...)

- *In base alle dimensioni del riduttore e al tipo di ingresso, è necessario il vaso di espansione (vedere cap. 6 del cat. EP).
 ** In base al progetto di uscita, è necessario il vaso di espansione (vedere cap. 6 del cat. EP).
 Foro di riferimento per l'identificazione della forma costruttiva.

Quantità di olio¹⁾[l]

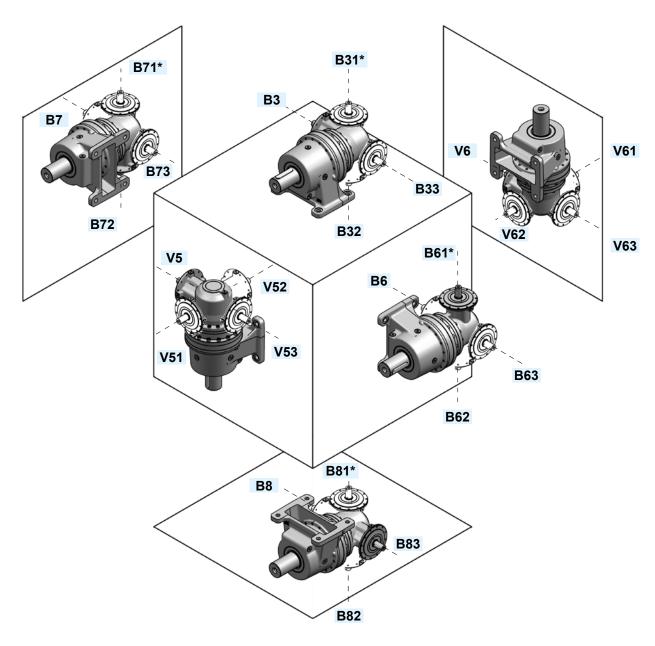
					2E	В									3E	В									4	ЕВ				
Q_{R}	001A	02A	003A	004A	006A	009A	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	15A	018A	021A	001A	002A	003A	004A	006A	A600	012A	015A	18A	21A
	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0
V3 V33	2	2,1	3,4	3,5	3,3	6,4	6,4	6,4	10,7	10,7	2,4	2,4	3	3,2	3	5,1	5,3	5,3	5,8	5,8	2,7	2,8	3,4	3,5	3,3	4,8	5	5	5,6	5,6
B5, B53	12	1,2	2	2	2	3.8	37	3 7	62	6.2	14	14	18	19	1.8	32	3 1	3 1	3 7	37	15	15	2	2	1,9	3	3	3	3.6	3,6
B51		2,4	3.9	4.1	3.9	7.6	7.4	7.4	12.4	6,2 12,4	2.7	2.7	3.6	3.7	3.6	6.3	6.3	6.3	7.4	7.4	3.1	3.1	3.9	4.1	3,9		6	6	7.3	7.3
B52	- 1	1,2		2	2	3.8	3.7	3.7	6.2	6,2	1.4	1.4	1.8	1.9	1.8	3.2	3.1	3.1	3.7	3.7	1.5	1.5	2				3	3	3,6	3.6
V1 V13		1,5		2,6				4,6											6		2,2			3,2			5,1	5,1	6,4	l '

¹⁾ Le quantità di olio indicate sono approssimative per l'approvvigionamento. Le quantità esatte di olio da immettere nel riduttore sono definite dal livello.

022A ... 3000A

Forme costruttive (Fissaggio in uscita ...F..., ... A...)

- *In base alle dimensioni del riduttore e al tipo di ingresso, è necessario il vaso di espansione (vedere cap. 6 del cat. EP).
 ** In base al progetto di uscita, è necessario il vaso di espansione (vedere cap. 6 del cat. EP).
 Foro di riferimento per l'identificazione della forma costruttiva.


Quantità d'olio²⁾ [l]

				2E	В									3EB												4E	В								5E	В	
Q_{R}	022A	030A	031A	042A	043A	060A 061A	085A	125A	022A	030A	031A	042A	043A	060A 061A	085A	125A	180A	250A	355A	022A	030A	031A	042A	043A	060A 061A	085A	125A	180A	250A	355A	500A	710A	1060A	1060A	1500A	2120A	3000A
V3 V33	-		12,4											20,5			56					_	_	_		23,6		52					_	316			
B5, B53	1 1	1	8,2				1		1		į .		,	10,2			28	42	53			6,1		'		11,8		26	34	51	63	98	161	158	208	244	432
B51	12,5		16,5														52	82	104							22,9		50	66	98	122	194	321	316	415	488	864
B52	7,6	8	8,2	9,4	10,4	10	16,8	27	4,9	6,3	7,8	8,2	9,3	11,1	11,2	21	44	46	57	4	5,4	6,4	6,3	7,7	7,6	12,2	18	26	34	51	63	102	192	175	225	275	463
V1 V13	10,1	7,8	10,6	13	15	14,2	20,5	31	6,9	7,5	10,5	10,8	13,5	14,8	16,7	34	52	70	92	6,1	8,5	10,4	10,2	13	12,9	20,3	32	46	64	93	118	182	391	316	415	488	864

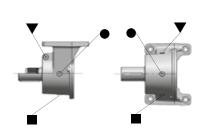
²⁾ Le quantità di olio indicate sono approssimative per l'approvvigionamento. Le quantità esatte di olio da immettere nel riduttore sono definite dal livello.

001A ... 021A

Forme costruttive (Fissaggio in uscita ... P...)

*In base alle dimensioni del riduttore e al tipo di ingresso, è necessario il vaso di espansione (vedere cap. 6 del cat. EP).

Quantità di olio1) [1]

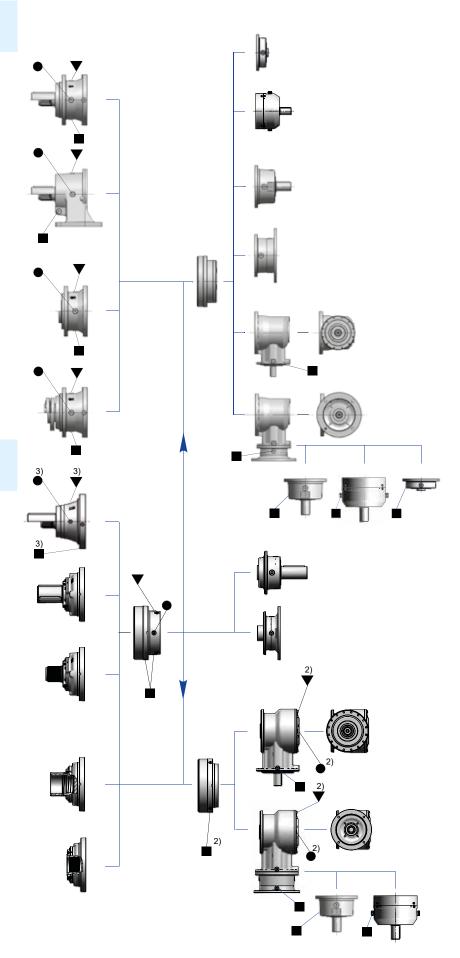

					2E	ЕΒ									3E	ЕВ									4E	В				
Q_{R}	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A
	+-				_	_			_	_												_			_					
B3 B8	1,2	1,2	2	2	2	3,8	3,7	3,7	6,2	6,2	1,4	1,4	1,8	1,9	1,8	3,2	3,1	3,1	3,7	3,7	1,5	1,5	2	2	1,9	3	3	3	3,6	3,6
B33 B83	1,2	1,2	2	2	2	3,8	3,7	3,7	6,2	6,2	1,4	1,4	1,8	1,9	1,8	3,2	3,1	3,1	3,7	3,7	1,5	1,5	2	2	1,9	3	3	3	3,6	3,6
B31 B81	2.4	2,4	3,9	4,1	3,9	7,6	7,4	7.4	12,4	12.4	2.7	2,7	3,6	3,7	3.6	6,3	6,3	6,3	7.4	7,4	3,1	3,1	3,9	4,1	3,9	6	6	6	7.3	7,3
B32 B82			2	2	2	3,8						1,4				3,2	3,1		3,7					2	1,9		3	3		3,6
V5 V53	1,5	1,5	2,5	26	2,5	1Ω	4,6	16	7,6	7,6	10	1,9	2,7	2,9	27	4,9	4,9	4,9	6	6	22	2,2	3	3,2	3	5,1	5,1	5,1	6,4	6.4
	1,5	,		,																	2,2			1 1		,		,		
V6 V63	2	2	3,4	3,5	3,3	6,4	6,4	6,4	10,7	10,7	2,4	2,4	3	3,2	3	5,1	5,3	5,3	5,8	5,8	2,7	2,8	3,4	3,5	3,3	4,8	5	5	5,6	5,6

¹⁾ Le quantità di olio indicate sono approssimative per l'approvvigionamento. Le quantità esatte di olio da immettere nel riduttore sono definite dal livello.

Pagina lasciata intenzionalmente bianca.

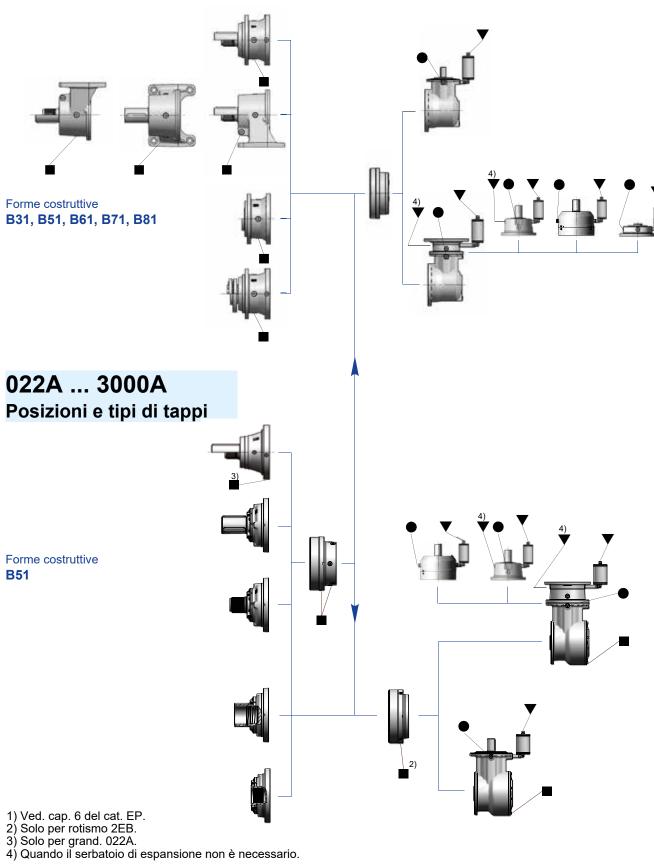
001A ... 021A

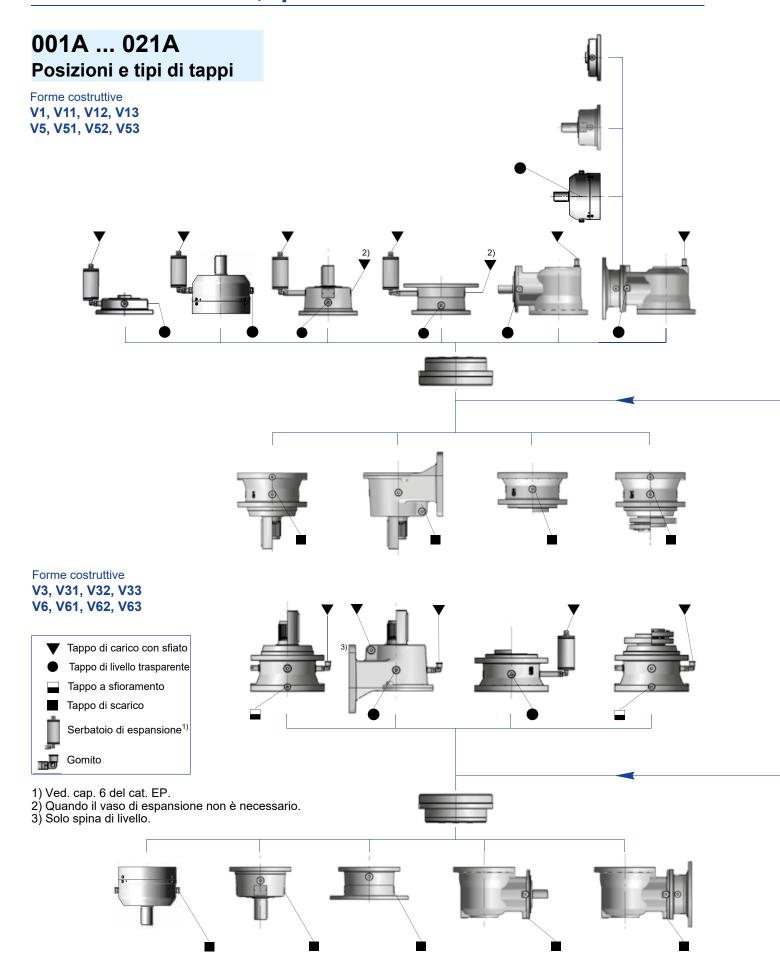
Posizioni e tipi di tappi


Forme costruttive B3, B5, B6, B7, B8 B32, B52, B62, B72, B82 B33, B53, B63, B73, B83

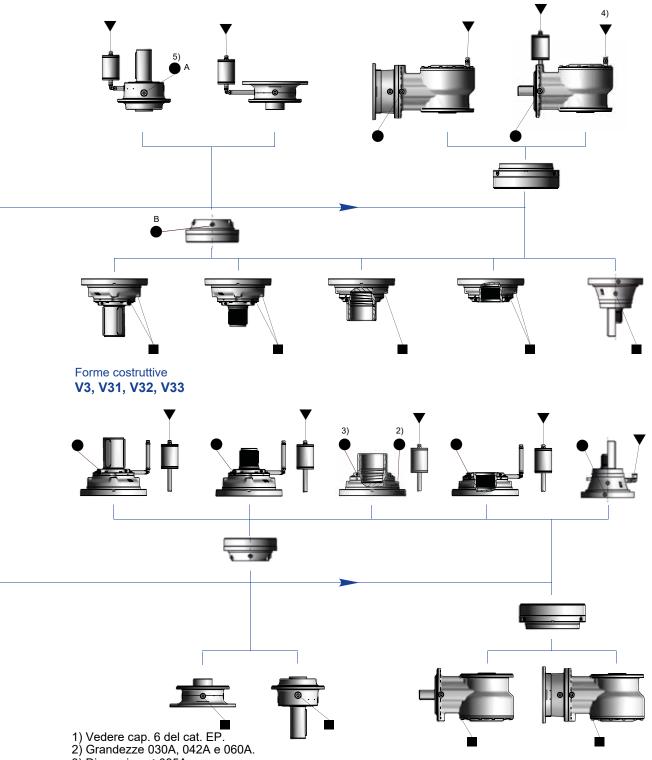
022A ... 3000A Posizioni e tipi di tappi

Forme costruttive B5, B52, B53



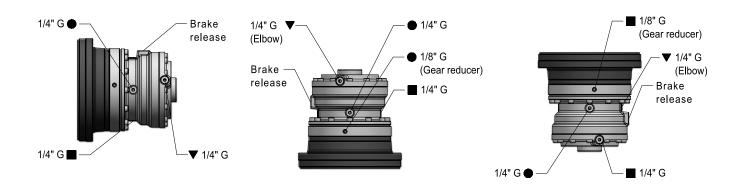

- 1) Ved. cap. 6 del cat. EP. 2) Solo per rotismo 2EB. 3) Solo per grand. 022A.

001A ... 021A


Posizioni e tipi di tappi

022A ... 3000A Posizioni e tipi di tappi

Forme costruttive V1, V11, V12, V13

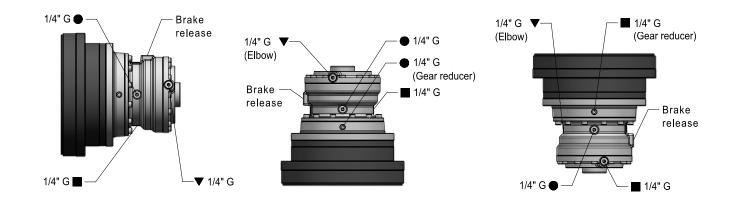


3) Dimensione ≥085A.

4) Quando il vaso di espansione non è necessario.

5) In presenza di un tappo di livello contrassegnato con A, B non presente.

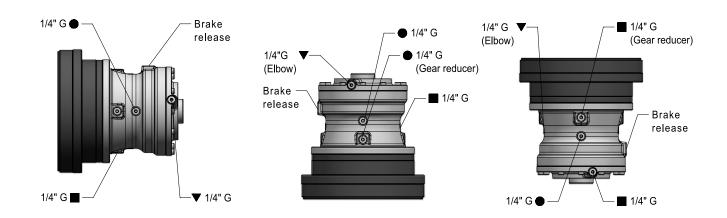
PB10 (001/002/C125/C160)



Quantità di olio [l]

1EL	2EL	3EL	4EL	2EB	3EB	4EB
001A, 002A	001A006A	001A022A	001A061A	001A006A	001A022A	001A061A

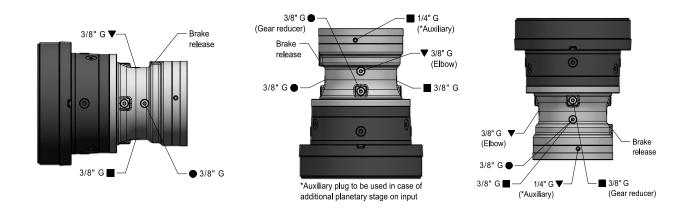
	Q_{R}	
B5	V1	V3
0,09	0,06	0,16


PB10 (003/004/006/C200)

Quantità di olio [l]

								Q_{R}	
1EL	2EL	3EL	4EL	2EB	3EB	4EB	B5	V1	V 3
003A006A	009A022A	030A061A	085A180A	009A015A, 022A	030A043A	085A125A	0,09	0,06	0,16

PB30 (003/004/006/C200)



Quantità di olio [l]

1EL	2EL	3EL	4EL	2EB	3EB	4EB	
003A006A	009A022A	030A061A	085A180A	009A015A, 022A	030A043A	085A125A	

$oldsymbol{Q}_{R}$								
B5	V1	V3						
0,36	0,18	0,67						

PB90 (009/012/015/C250)

Quantità di olio [I]

 Q_{R}

									-41	
1EL	2EL	3EL	4EL	2EB	3EB	4EB		B5	V1	V3
009A015A	030A043A	085A125A	250A, 355A	018A, 021A, 030A	060A085A	180A, 250A	-	0,48	0,24	0,90

Quantità di olio [l]

Per la forma costruttiva B5 la quantità di olio esatta da immettere nel freno è definita dal livello.

Per le forme costruttive V1, V3 devono essere utilizzate le quantità di olio indicate nelle tabelle.

Lubrificazione

I riduttori sono lubrificati ad olio, i cuscinetti sono lubrificati a bagno d'olio, a sbattimento o con grasso «a vita». Per alcune forme costruttive con servizio continuo a velocità elevata è previsto un serbatoio d'espansione, ved. cap.

Grandezze 001A ... 021A: i riduttori sono forniti con olio sintetico PAO avente grado di viscosità ISO 320 cSt (a 40° C).

Importante!: Verificare la posizione di montaggio, tenendo presente che se il riduttore viene installato in una posizione di montaggio diversa da quella indicata sulla targhetta, potrebbe essere necessario aggiungere la differenza tra le due quantità di lubrificante. Controllare sempre la quantità di olio corretta attraverso il tappo di livello.

Grandezze 022A ... 3000A: i riduttori sono forniti **senza olio**; prima della messa in servizio, riempire al livello specificato¹⁾ con olio sintetico o minerale (vedere la tabella seguente).

1) Le quantità di lubrificante indicate nelle presenti istruzioni sono approssimative e indicative per l'approvvigionamento. La quantità esatta di olio da immettere nel riduttore è data dal livello. Quando la velocità di uscita n_2 è inferiore a 0,3 min⁻¹, per tutte le posizioni di montaggio fare riferimento alle quantità approssimative di olio indicate per la posizione V1.

Importante:

lubrificanti inadeguati possono causare danni al riduttore. I lubrificanti sintetici a base di polialfaolefina (PAO) devono essere preferiti ai lubrificanti sintetici a base di poliglicole (PAG).

Non mescolare mai oli sintetici di tipo o marca diversi; se il cambio dell'olio prevede il passaggio a un tipo diverso da quello usato finora, dare una ripulita completa al riduttore.

In caso di primo riempimento di lubrificante sintetico a base di poliglicole (PAG), è obbligatorio pulire accuratamente il riduttore prima del riempimento finale mediante un lavaggio interno preliminare per eliminare i residui di eventuali lubrificanti.

Rossi S.p.A. declina ogni responsabilità per danni derivanti dall'utilizzo di altri lubrificanti o dall'utilizzo al di fuori del campo di temperature ambiente previsto. Le indicazioni sui lubrificanti non vincola Rossi S.p.A. sulla qualità del lubrificante fornito da ciascun rispettivo produttore.

Utilizzare solo lubrificanti con additivazione di tipo EP (extreme pressure).

Qualora si scelga di utilizzare lubrificanti a base minerale, tenere presente le indicazioni sul fattore di servizio (catalogo EP).

		i e
Produttore	olio sintetico PAO	olio minerale
	ISO VG 320	ISO VG 150 460
	100 10 020	100 100 100
AGIP	Blasia SX	Blasia
ARAL	Degol PAS	Degol BG
BP	Enersyn EPX	Energol GR-XP
		e.ge.
CASTROL	Alphasyn EP	Alpha SP
FUCHS	Renolin Unisys	Renolin CLP

Produttore	olio sintetico PAO ISO VG 320	olio minerale ISO VG 150 460
KLÜBER	Klübersynth GEM4	Klübersynth GEM1
MOBIL	Mobil SHC Gear	Mobilgear 600 XP
SHELL	Omala S4 GX	Omala S2 G
TEXACO	Pinnacle	Meropa
TOTAL	Carter SH	Carter EP

Per la scelta della viscosità del lubrificante, fare riferimento alla tabella della pagina successiva.

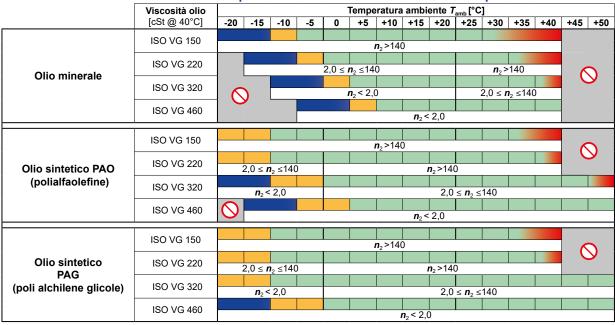
Cuscinetti con lubrificazione indipendente

Di solito i cuscinetti sono lubrificati automaticamente e continuamente (a bagno d'olio o a spruzzo) con lo stesso lubrificante del riduttore. Tuttavia per certi riduttori in forma costruttiva verticale V1, V3 e orizzontale B51, B52 i cuscinetti superiori hanno lubrificazione indipendente, con grasso speciale per lubrificazione «a vita in assenza di inquinamento dall'esterno.

Lubrificazione dei freni di stazionamento PB

I freni della serie PB necessitano di lubrificazione e sono forniti senza olio, come specificato da apposita etichetta adesiva. Prima di metterli in servizio, effettuare il riempimento con olio minerale di viscosità ISO VG 32, se non diversamente prescritto da altra documentazione specifica. Gli olii idraulici sono generalmente idonei.

La lubrificazione è separata per evitare una contaminazione precoce del lubrificante nel riduttore e garantire una maggiore durata di ingranaggi e cuscinetti.



Lubrificazione

Lubrificante


Selezione del tipo di lubrificante e della viscosità in base alla velocità di uscita n_2 [min⁻¹] e alla temperatura ambiente T_{amb} [°C]. Le seguenti tabelle sono state create partendo dalle caratteristiche del lubrificante Shell, ma sono valide anche per prodotti simili (vedi tabella sotto). Per ulteriori verifiche, soprattutto in condizioni operative estreme, consultare sempre la scheda tecnica del lubrificante specifico.

Lubrificazione a spruzzo o con unità di raffreddamento indipendenti 1)

Prevedere l'avviamento delle unità di raffreddamento indipendenti solo quando la temperatura dell'olio T_{dell'olio} è > 25°C. Durante l'avviamento, può essere necessario un breve periodo di tempo affinché l'olio circoli completamente tra l'unità e il riduttore, a seconda del livello di viscosità e della morfologia delle tubazioni e dei raccordi dell'olio. Durante questo periodo di transizione, il funzionamento del riduttore è consentito.

Lubrificazione forzata con/senza scambiatore di calore 2)

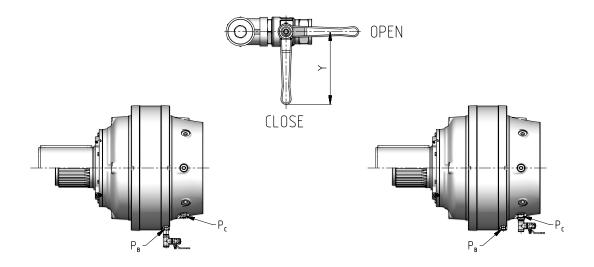
²⁾ In caso di lubrificazione forzata, il riduttore deve funzionare solo quando la temperatura dell'olio T_{dell'olio} è superiore a quella indicata nella tabella. Durante l'avviamento dell'unità di lubrificazione, può essere necessario un breve periodo di preriscaldamento, da effettuarsi a riduttore fermo, prima di ottenere la completa circolazione dell'olio e la corretta lubrificazione dei componenti interni.

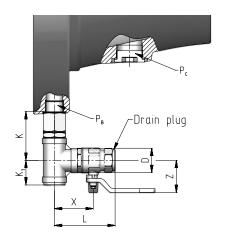
Campo di applicazione ammesso, gamma ottimale.

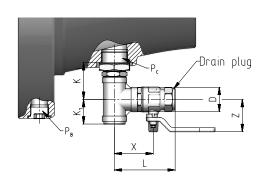
Campo di applicazione ammesso dove si prevede un assorbimento maggiore a causa della viscosità più elevata; preferisce gli avviamenti graduali e il funzionamento a carico parziale.

Campo di applicazione non ottimale; in questo caso si raccomanda di utilizzare oli con grado di viscosità di almeno 30 cSt riferito alla temperatura massima dell'olio (7 cin) durante il funzionamento.

Campo di applicazione non ottimale; in questo caso è necessario prevedere un olio con punto di scorrimento inferiore di almeno 10°C rispetto alla temperatura minima indicata dal campo. Prevedere una fase di rotazione a vuoto (preriscaldamento) almeno fino al raggiungimento di una temperatura Tamb uguale o superiore a quella minima indicata nel campo di applicazione ammesso.


Campo di applicazione non consentito. Se necessario, contattare Rossi S.p.A.


n₂>140 Velocità di uscita indicativa per la selezione della viscosità del lubrificante


Rubinetto di scarico olio

Il rubinetto di scarico può essere fornito per alcune grandezze di riduttori, qualora sia necessario scaricare completamente l'olio. È raccomandato posizionare il rubinetto nel punto più basso del riduttore (P_B);tuttavia, se ciò non fosse possibile, potete utilizzare il foro più vicino (P_C).

Codice per la designazione: ,TA.

Grand. riduttore	P _B	P _C
030 061	-	G 1/2"
085 125	G 1/2"	G 3/4"
180 250	G 1/2"	G 1"
355 710	G 3/4" G 1"	G 1" 1/4

D Ø	L	X	Y	Z	K	K ₁
30,5		55	80	41,3	68	35,75
39,3		92	113	54,8	46,5	39,5
45,5	151	109	113	58,8	89,5	47
57	129,5	84	135,62	74,8	66	55
	30,5 39,3 45,5	30,5 39,3 45,5 151	Ø 30,5 55 39,3 92 45,5 151 109	Ø 30,5 55 80 39,3 92 113 45,5 151 109 113	Ø 55 80 41,3 39,3 92 113 54,8 45,5 151 109 113 58,8	Ø 55 80 41,3 68 39,3 92 113 54,8 46,5 45,5 151 109 113 58,8 89,5

Serie PB - Freni di stazionamento

Caratteristiche

I freni di stazionamento della serie PB sono freni con molle e dischi multipli a comando idraulico da usare in abbinamento ai riduttori epicicloidali serie EP.

Non sono freni di servizio e non possono essere utilizzati in condizioni di frenatura dinamica. Vengono utilizzati per mantenere frenata la massa dell'applicazione o per frenare l'applicazione in caso di emergenza.

I valori di momento frenante statico M_{Bstat} riportati nella tabella seguente sono da ritenersi nominali e validi in condizione di freno nuovo e lubrificato correttamente. La tolleranza sui valori di M_{Bstat} è pari a \pm 10%.

Dopo qualche ciclo di frenatura in servizio, i valori di momento frenante statico possono subire una riduzione tra il 5% e il 10%, dovuta all'assestamento dei dischi.

ATTENZIONE: verificare sempre che il momento frenante statico M_{Bstat} riportato in uscita al riduttore non superi il valore di M_{2MAX} del riduttore stesso.

Effetti sulla potenza termica del riduttore

Generalmente, nelle condizioni di servizio richieste dalle normali applicazioni dove è presente un freno a comando idraulico, non si raggiungono i limiti di potenza termica del riduttore.

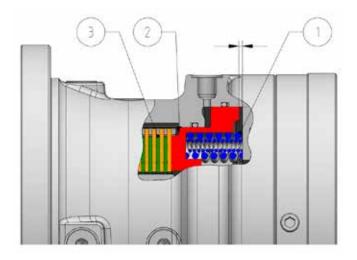
Tuttavia in determinate condizioni di servizio (velocità elevate, servizio continuativo e/o molto frequente, posizioni di montaggio sfavorevoli come V1 e V3 o similari) è possibile che il normale funzionamento del freno generi un progressivo surriscaldamento del gruppo, condizionando il valore di potenza termica ammessa dal riduttore.

In questi casi è possibile adottare soluzioni che limitano il surriscaldamento del freno o aumentare la potenza termica del gruppo mediante un sistema di raffreddamento integrato o una unità autonoma di raffreddamento. Contattarci per maggiori informazioni.

Velocità limite

La presenza di un freno SAHR non comporta limitazioni ai valori di n_{1max} e n_{1peak} del riduttore indicati sul catalogo EP.

ATTENZIONE: un servizio continuativo e/o molto frequente a velocità elevate può generare il surriscaldamento del gruppo (vedere paragrafo precedente).

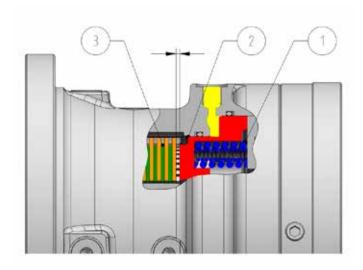

Condizioni di impiego

I freni sono progettati per applicazioni industriali, temperatura ambiente -20 °C ÷ + 50 °C, altitudine massima 1000 m. Per funzionamento con temperature da -20 °C a 0 °C limitare la p_{max} a 200 bar.

Funzionamento freni di stazionamento PB

Freno chiuso

In assenza di pressione nel circuito di alimentazione (0 bar) le molle (1) producono una forza sul pistone (2) che blocca i dischi (3) e genera un momento frenante nominale pari a M_{Bstat} .



Freno aperto

Al di sopra della pressione di 0 bar, il pistone comincia a comprimere le molle ed il freno riduce progressivamente il momento frenante.

Quando la pressione di alimentazione supera il valore di p_{min} il freno comincia ad aprirsi; al raggiungimento del valore p il freno è completamente aperto, il pistone è a fine corsa e i dischi possono ruotare liberamente.

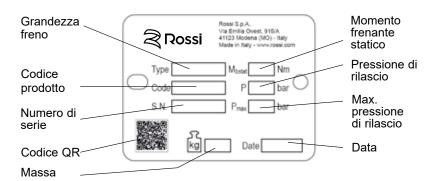
Per garantire una maggiore durata di vita del freno, si consiglia di dimensionare la pressione di alimentazione a un valore superiore del 50% rispettoa a p e comunque non superiore a p_{max}.

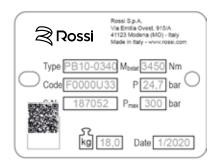
Dati tecnici freni di stazionamento PB

PB10			0075	0150	0225	0340	0420	0525	0650	0815
Momento frenante statico	M _{Bstat}	[N m]	72	156	224	345	421	531	660	818
Pressione di apertura min	$oldsymbol{ ho}_{min}$	[bar]	4,4	9,5	10,2	15,7	15,4	19,4	20,1	24,9
Pressione di apertura	р	[bar]	6,9	14,9	16,1	24,7	24,2	30,4	31,6	39,1
Pressione di apertura max	$oldsymbol{ ho}_{max}$	[bar]				30	00			
Velocità max	n _{1max}	[min ⁻¹]	in base ai valori di n _{1max} e n _{1peak}							
Volume olio per aperture	V	[1]				0,	10			

PB30			0250	0400	0500	0630	0800	1000	1250	1500	1700
Momento frenante statico	M _{Bstat}	[N m]	265	407	509	637	809	1 010	1 281	1 529	1 741
Pressione di apertura min	$oldsymbol{ ho}_{ ext{min}}$	[bar]	7,6	11,8	11,8	14,7	15,6	19,4	24,7	25,2	28,7
Pressione di apertura	р	[bar]	12,0	18,5	18,5	23,1	24,5	30,5	38,7	39,6	45,1
Pressione di apertura max	$oldsymbol{ ho}_{ ext{max}}$	[bar]					300				
Velocità max	n _{1max}	[min ⁻¹]	in base ai valori di $m{n}_{1 ext{max}}$ e $m{n}_{1 ext{peak}}$								
Volume olio per aperture	V	[1]		0,12							

PB90			0850	1250	1500	1800	2100	2600	3000	3550	4250
Momento frenante statico	M _{Bstat}	[N m]	869	1 304	1 552	1 811	2 173	2 680	3 063	3 560	4 305
Pressione di apertura min	$oldsymbol{ ho}_{min}$	[bar]	10,2	15,3	18,2	18,2	21,9	27,0	27,0	31,4	37,9
Pressione di apertura	р	[bar]	15,3	23,0	27,4	27,4	32,8	40,5	40,5	47,1	56,9
Pressione di apertura max	p _{max}	[bar]					300				
Velocità max	n _{1max}	[min ⁻¹]	in base ai valori di $m{n}_{1 ext{max}}$ e $m{n}_{1 ext{peak}}$								
Volume olio per aperture	V	[1]		0,25							

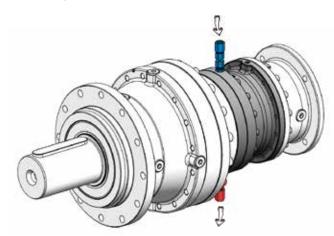

Altri valori di momento frenante a richiesta.


I valori sopra indicati sono forniti con una contro-pressione ammessa di 0 bar, qualsiasi altra contro pressione dovrà essere considerata in caso di usura del sistema.

Stato di fornitura

Targa del freno di stazionamento PB

Ogni riduttore è dotato di una targhetta in alluminio anodizzato contenente le principali informazioni necessarie per una corretta identificazione del prodotto; la targhetta non deve essere rimossa e deve essere mantenuta integra e leggibile. Tutti i dati riportati nella targa devono essere specificati per eventuali ordini di parti di ricambio.


Lubrificazione dei freni di stazionamento PB

I freni della serie PB necessitano di lubrificazione e sono forniti senza olio, come specificato da apposita etichetta adesiva. Prima di metterli in servizio, effettuare il riempimento con olio minerale di viscosità ISO VG 32, se non diversamente prescritto da altra documentazione specifica. Gli olii idraulici sono generalmente idonei.

La lubrificazione è separata per evitare una contaminazione precoce del lubrificante nel riduttore e garantire una maggiore durata di ingranaggi e cuscinetti.

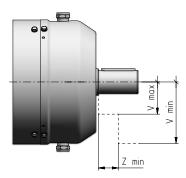
Sistema integrato di raffreddamento ad acqua

I riduttori, a seconda delle grandezze, possono essere equipaggiati con un sistema di raffreddamento ad acqua.

Caratteristiche dell'acqua di raffreddamento:

- · bassa durezza;
- temperatura massima 20 °C;
- portata minima 3 dm³/min (l/min);
- pressione 0,2 ÷ 0,4 Mpa (2 ÷4 bar).

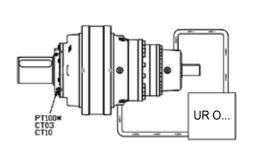
Per il collegamento è possibile utilizzare un raccordo standard in base alle dimensioni dell'attacco femmina (vedere sotto).

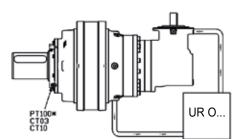

Assicurarsi che tutti i collegamenti siano privi di perdite.

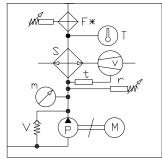
1EL	2EL	3EL	4EL	2EB	3EB	4EB	d	Codice
							Ø	
001A 002A 003A 006A	001A 006A 009A 022A	001A 022A 030A 061A	001A 061A 085A 180A	001A 006A 009A 015A , 022A	001A 022A 030A 043A	001A 061A 085A 125A	G1/4" G1/4"	RS1a RS1b
009A 015A	030A 043A	085A 125A	250A 355A	018A 021A , 030A	061A 085A	180A 250A	G1/4"	RS1c

Sistema integrato di raffreddamento ad aria

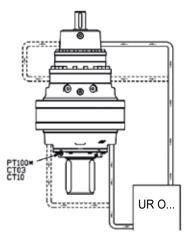
Quando il riduttore è dotato di ventola, è necessario verificare che resti un adeguato spazio per l'aspirazione dell'aria di raffreddamento, anche dopo avere montato la protezione.

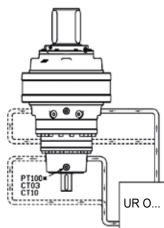


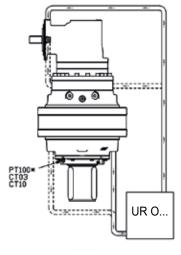

1EL	2EL	3EL	4EL	2EB	3EB	4EB	\mathbf{V}_{\max}	\mathbf{V}_{\min}	Z _{min}	Codice
							Ø	Ø		
001A, 002A 003A 006A	001A 006A 009A 022A	001A 022A 030A 061A	001A 061A 085A 180A	009A 015A , 022A	001A 022A 030A 043A	001A 061A 085A 125A	70 85	195 230	27 30	V38×58 V48×82
009A 015A	030A 043A	085A 125A	250A 355A	018A, 021A, 030A	060A 085A	180A 250A	110	280	35	V60×105

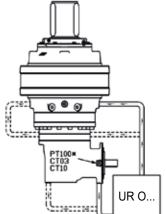

Consigli per la progettazione di unità di raffreddamento indipendenti

Per la progettazione del sistema di raffreddamento, ved. le istruzioni seguenti e gli schemi esemplificativi.


Per la fase di aspirazione è necessario posizionarsi nel punto più basso e che i punti di aspirazione e mandata siano adeguatamente distanti uno dall'altro.







UR 0 ...

Legenda:

Pt 100 Sonda di temperatura dell'olio (fornita separata-

mente)

filtro con segnalatore elet-F trico di intasamento (con UR O/W... fornito separa-

tamente)

manometro 0 ÷ 16 bar m М pompa a motore

pompa

CT 03*, CT10*dispositivo di segnalazione (fornito separatamente)

scambiatore di calore olio/ S

aria o olio/acqua

motore ventilatore (UR

termostato ventilatore 0 ÷ 90

°C (UR O/A...)

Т termometro 0 ÷ 120 °C

٧ valvola di sicurezza 6 bar

(pompa a vite)

pressostato

pressione

Capienza d'olio dei fori

Grand.	d	q _{s (max)}	q _{d (max)}
tappo.	[mm]	[l/min]	[l/min]
G 1/4"	7	3	5
G 3/8"	10	6	10
G 1/2"	12	9	15
G 3/4"	16	16	27
G 1"	22	30	51
G 1 1/4"	30	56	95

I valori indicati sono validi con una viscosità cinematica dell'olio di circa 60 Cst.

E' molto importante progettare il circuito idraulico in base alle seguenti indicazioni:

$$q_s \leq Q_R$$

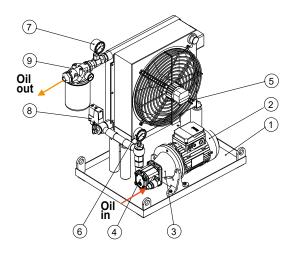
q_s maxmandata in aspirazione per 1 foro.

q_d maxmandata per 1 foro.

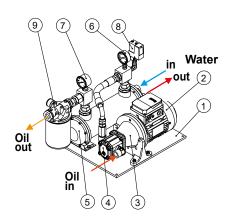
 \mathbf{Q}_{R} è la quantità di olio del riduttore al livello corretto, vedi cap. 6, cat. EP.

d diametro interno di raccordi e tubi.

Qualora l'impiego di un solo foro non sia sufficiente a dissipare tutto il flusso dell'olio, 2 o più fori potrebbero essere collegati alla tubazione principale (aspirazione e mandata).


Ovviamente, trattandosi di un circuito chiuso, il flusso totale dell'olio in aspirazione e mandata deve essere equivalente.

^{*} Su richiesta.


Unità di raffreddamento indipendenti

Unità di raffreddamento indipendente con scambiatore di calore olio-aria **UR O/A** ...

Unità di raffreddamento indipendente con scambiatore di calore olio-acqua ${\bf UR}~{\bf O}/{\bf W}~...$

Pos.	Descrizione				
1	Basamento				
2	Motore elettrico				
3	Accoppiamento				
4	Pompa ad ingranaggi				
5	Scambiatore di calor				
6	Manometro				
7	Termometro				
8	Pressostato				
9	Filtro di uscita				

Quando il raffreddamento naturale o le unità di raffreddamento integrate non sono più sufficienti (per la verifica della potenza termica vedere cap. 2 del cat. EP), è possibile installare le unità di raffreddamento indipendenti descritte di seguito.

- scambiatore di calore olio/aria (O/A; con termostato e manopola di regolazione regolabile 0 ÷ 90 °C) o scambiatore di calore olio/acqua (O/W)
- motopompa: pompa a vite o ad ingranaggi con guarnizioni in gomma fluorurata; motore a 4 poli B3/B5 (trifase Δ230 Y400 V 50 Hz); collegamento motopompa con giunto
- motore ventilatore (O/A) (alimentazione trifase Δ230 Y400 V 50 Hz o alimentazione monofase 230 V 50, 60 Hz, vedi tabella)
 - filtro olio (tipo Spin-On) con grado di filtrazione 60µm (M60) e segnalazione ottico-elettrica di intasamento (BVR)
 - manometro analogico (0 ÷ 16 bar) montato tra pompa e scambiatore
 - termometro analogico (0 ÷ 120 °C) montato all'uscita dello scambiatore
 - bassapressostato (con interruttore on-off) montato tra la pompa e lo scambiatore
 - telaio di supporto con targhetta
 Su richiesta, sono disponibili diversi accessori (forniti separatamente, assemblati dal Cliente) per soddisfare tutte le
 - esigenze di funzionalità e sicurezza:
 sonda di temperatura dell'olio Pt100
 - Dispositivo di segnalazione a 2 soglie CT03 (necessaria anche la sonda di temperatura dell'olio Pt100) per il montaggio su guida secondo DIN EN 50022
 - Dispositivo di segnalazione a 3 soglie CT10 (necessaria anche la sonda di temperatura dell'olio Pt100) per il montaggio su guida secondo DIN EN 50022
 - · termostato di tipo bimetallico
 - · misuratore di portata

I collegamenti realizzati con tubi flessibili (tipo SAE 100 R1, lunghezza massima 2 m) tra riduttore e unità di raffreddamento e il montaggio di accessori e dispositivi di segnalazione sono a carico dell'Acquirente.

Nella scelta dell'unità di raffreddamento indipendente, è bene assicurarsi che la portata (litri/minuto) non superi il 50% del volume di lubrificante presente all'interno del riduttore, nella specifica posizione di montaggio.

Ottime prestazioni raggiungibili con temperatura dell'aria a max 25 °C per UR O/A e temperatura dell'acqua a max 20 °C per UR O/W.

Per il calcolo della potenza eccedente in base a ciascuna grandezza, vedere il cap. 2.2.3 del cat. EP.

Per la progettazione del sistema di raffreddamento, vedere pagina 60 delle presenti istruzioni.

Caratteristiche operative - UR O/A ... - EP

		P s	Scambiato- re di calore		pompa olio	Caratte	eristiche dell	o scamb		Tipo di filtro dell'olio					
			aria-olio	au	Lato ventilatore elettrico					Lato olio					
Des	signazione Potenza motore Capacità				Potenz	a e tipo di moto	re	Connettore femm. di aspirazione olio mandata olio. Olio vol.				Kg			
		Tipo di filtro dell'olio		[kW]	[dm³/min]	kW [50Hz / 230V-400V]	kW [60 Hz / 265V-460V]	Numero fasi	n° e dim.	n° e dim.	[dm³]	Dimensioni e filtraggio	Pressione ottica calibro		
URO	A 5-EP	5	AP 300 E	0,75	6	0,12 / 0,20	0,15 / 0,23	1~	1× G 3/4"	1× G 3/4"	2	MPS 050 M60	BVR	60	
URO	A 7-EP	7	AP 300 E	0,75	9	0,12 / 0,20	0,15 / 0,23	1~	1× G 3/4"	1× G 3/4"	2	MPS 050 M60	BVR	64	
URO	A 9-EP	9	AP 300/2 E	0,75	11	0,12 / 0,20	0,15 / 0,23	1~	1× G 3/4"	1× G 3/4"	4	MPS 050 M60	BVR	70	
URO	A 13 - EP	13	AP 430 E	1,1	16	0,11 / 0,21	0,11 / 0,20	3~	1× G 3/4"	1× G 3/4"	4	MPS 100 M60	BVR	75	
URO	A 20 - EP	20	AP 430/2 E	1,1	20	0,11 / 0,18	0,15 / 0,26	3~	1× G 3/4"	1× G 3/4"	6	MPS 100 M60	BVR	115	
URO	A 28 - EP	28	AP 580 EB	1,5	46	0,11 / 0,18	0,15 / 0,26	3~	2× G 3/4"	2× G 3/4"	12	MPS 100 M60	BVR	125	
URO	A 40 - EP	40	AP 680 EB	1,5	46	0,70	1,1	3~	2×G 1"	2× G 1"	15	MPS 150 M60	BVR	140	
URO	A 48 - EP	48	AP 730 EB	2,2	56	0,70	1,1	3~	2×G 1"	2×G 1"	15	MPS 150 M60	BVR	150	

¹⁾ Ps prestazioni valide per altitudini da 0 a 1 000 m s.l.m. Ridurre il valore delle prestazioni Ps x 0,85 (da 1 000 a 2 500 m s.l.m.) o Ps x 0,71 (da 2 500 a 5 000 m s.l.m.)

Caratteristiche operative - UR O/W ... - EP

	P s	Scambiatore di calore acqua-olio	por	Olio npa a otore		С	aratteristich	e dello scam	nbiatore acqu	a-olio to olio		Tipo di fil	tro dell'olio	
Designazione		·	Poten- za del motore Capacità motore [kW] [dm³/min		Сар	acità	Connettore femm. di aspirazione	Connettore femm. di mandata	Connettore femm.	Connettore femm. mandata olio	Olio vol.		k k	g
	[kW]				[dm³/min] n° e dim.		n° e dim. n° e dim.		n° e dim.	[dm³] Dimensioni e filtraggio		Pressione ottica calibro		
URO/W 4-EP	4	T80 CB2	0,37	6	≥ 30	≤ 60	1× Ø17 - 1/2"	1× Ø17 - G1/2"	1× G 3/4"	1× G 3/4"	1,0	MPS 050 M60	BVR	14
URO/W 6-EP	6	T80 CB3	0,37	6	≥ 30	≤ 80	1× Ø17 - 1/2"	1× Ø17 - G1/2"	1× G 3/4"	1× G 3/4"	1,6	MPS 050 M60	BVR	16
URO/W 9-EP	9	T80 CB3	0,75	13	≥ 30	≤ 80	1× Ø17 - 1/2"	1× Ø17 - G1/2"	1× G 3/4"	1× G 3/4"	1,6	MPS 050 M60	BVR	20
URO/W 13 - EP	13	MS 134P1	1,1	20	≥ 60	≤ 110	1× G 1"	1×G 1"	1× G 3/4"	1× G 3/4"	2,8	MPS 100 M60	BVR	30
URO/W 20 - EP	20	MS 134P1	1,1	30	≥ 60	≤ 110	1× G 1"	1×G 1"	2× G 3/4"	2× G 3/4"	2,8	MPS 100 M60	BVR	32
URO/W 32 - EP	32	MS 134P2	1,5	40	≥ 80	≤ 110	1× G 1"	1×G 1"	2× G 1"	2× G 1"	4,6	MPS 150 M60	BVR	60
URO/W 48 - EP	48	MS 134P4	1,5	60	≥ 100	≤ 120	1× G 1"	1×G 1"	2× G 1"	2× G 1"	6,8	MPS 150 M60	BVR	75

Modalità di avviamento e accessori necessari

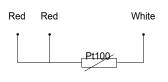
Rif.	τ _{amb} °C	Accessori necessari	Tipo di olio richiesto	Descrizione e osservazioni
A1	0 ÷ 25	Pt100 + CT10	Olio sintetico a base di polialfaolefine oppure Olio minerale	Avviamento del riduttore e successivo avviamento della motopompa con olio caldo. La motopompa è gestita dal sistema di controllo della temperatura dell'olio a tre soglie (Pt100 + CT10). Impostare il dispositivo a tre soglie CT10 con: temperatura di esercizio 60 °C (avvio del motore-pompa); temperatura di ripristino 40 °C; temperatura di avvertimento 90° C.
A2	> 25	_	Olio sintetico a base di polialfaolefine	Avviamento simultaneo di riduttore e motopompa

Descrizione aggiuntiva alla designazione per l'ordinazione:

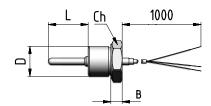
unità di raffreddamento olio-aria indipendente UR O/A ... - EP o unità di raffreddamento olio-acqua indipendente UR O/W ... - EP. Per maggiori dettagli sulla modalità di avviamento di riferimento A1 / A2, consultare la letteratura specifica. Per dimensioni, accessori, e ulteriori dettagli tecnici ved. documentazione specifica.

Rossi

Sensore temperatura olio Pt100


Sensore da remoto della temperatura dell'olio; installazione (a cura dell'Acquirente) al posto di un tappo di scarico esistente o in un foro opportunamente predisposto. Il sensore di temperatura è realizzato con un termoresistore Pt100 con le seguenti caratteristiche:

- filo di platino con 100 Ω a 0 °C secondo EN 60751
- · classe di precisione B secondo EN 60751
- campo di temperatura di funzionamento -40 °C ÷ +200 °C
- · corrente massima 3 mA
- · Collegamento a 3 fili secondo IEC 751 (vedi fig. sotto)
- · sonda in acciaio inox AISI 316; diametro 6 mm
- · cavo lungo 1 m con estremità libera


Per il collegamento del sensore al dispositivo di segnalazione CT03 o CT10 (a richiesta, contattateci) utilizzare un cavo di sezione protetta ≥ 1,5 mm² posizionato separatamente dai cavi di alimentazione.

Nel caso di riduttori forniti con olio e sonda opzionale di temperatura dell'olio, per montarli è necessario posizionare il riduttore in modo che il foro di alloggiamento del sensore sia rivolto verso l'alto.

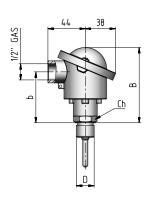
Codice per la designazione :,IT4.

В	C h (chiave)	D	L
8	22	G 3/8"	35
8	22	G 1/2"	35
10	32	G 3/4"	35
15	36	G 1"	35

Sensore temperatura olio con morsettiera e trasduttore amperometrico 4 ÷ 20 mA

Sensore per il monitoraggio a distanza della temperatura dell'olio, con scatola morsettiera e trasduttore amperometrico; installazione al posto del tappo di scarico, a cura dell'Acquirente. Il sensore di temperatura è realizzato con un termoresistore Pt100 con le seguenti caratteristiche:

- filo di platino con 100 Ω a 0 °C secondo EN 60751
- · classe di precisione B secondo EN 60751
- intervallo di temperatura -40 °C ÷ 200 °C;
- · Collegamento a 3 fili secondo IEC 751 (vedi fig. sotto)
- · sonda in acciaio inox AISI 316; diametro 6 mm
- trasduttore amperometrico con segnale di uscita 4 ÷ 20 mA
- · morsettiera in alluminio (fornita senza pressacavo)
- · protezione IP65
- cavi di ingresso G ½"


Per il collegamento del sensore al relativo dispositivo di segnalazione utilizzare un cavo di sezione protetta ≥ 1,5 mm² posizionato separatamente dai cavi di alimentazione.

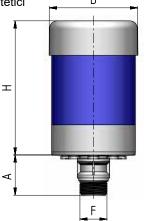
ATTENZIONE. Accessorio disponibile solo per valutazione di fattibilità tecnica da parte di Rossi S.p.A.: contattateci.

Nel caso di riduttori forniti con olio e sonda opzionale di temperatura dell'olio, per montarli è necessario posizionare il riduttore in modo che il foro di alloggiamento del sensore sia rivolto verso l'alto.

Codice per la designazione : ,IT7.

В	C h (chiave)	b	D
90	24	60	G 3/8"
90	24	60	G 1/2"
92	32	62	G 3/4"
97	36	67	G 1"

Cartuccia anticondensa


Cartuccia anticondensa con tre stadi di filtrazione: filtro contaminanti solidi 2 µm, strato assorbente vapore acqueo in silica gel, strato finale ai carboni attivi. Rimuove il vapore acqueo e i contaminanti solidi prima che questi entrino nel riduttore e contemporaneamente trattiene i vapori d'olio all'interno del riduttore stesso.

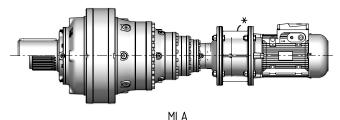
Caratteristiche principali:

- · cartuccia sostituibile con indicatore di durata reale delle condizioni del filtro
- resistente agli alcali, agli oli, agli acidi non ossidanti, all'acqua salata e agli oli minerali e sintetici
- · involucro e copertura resistente agli urti
- intervallo di temperatura di applicazione: -28 °C ÷ +93 °C

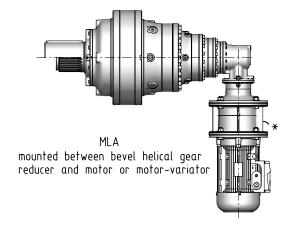
Codice per la designazione :,TM5.

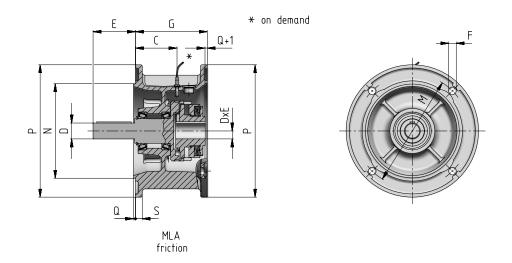
F	D	Н	Α
	Ø		
3/8 "	64	109.4	27
1"	104	105.4	47

Modulo MLA, limitatore di momento torcente sull'albero di ingresso


Modulo MLA, limitatore di momento torcente sull'albero d'ingresso, dimensioni del motore 71 ... 280.

Limitatore di momento torcente da interporre tra il riduttore e il motore in posizione di montaggio B5 standardizzato IEC (o a cinghia larga o motore-variatore planetario).


Esecuzione assiale ultracompatta: eccellente supporto del carico con cuscinetti a sfere a contatto obliquo lubrificati a vita a doppia corona (grandezza motore < 112) o cuscinetti a rulli conici con disposizione a "O".


L'unità protegge il convertitore di frequenza da sovraccarichi accidentali escludendo i carichi d'inerzia trasmessi dalle masse a monte e dalle masse a valle.

Modulo **MLA** a **frizione** (guarnizioni di attrito senza amianto). Quando il momento torcente trasmesso tende a superare quello di taratura si ha lo «slittamento» della trasmissione che però resta in presa con un momento torcente pari a quello di taratura del limitatore; lo slittamento cessa quando il carico ritorna normale; nel caso di sovraccarichi di durata molto breve la macchina può riprendere il normale funzionamento (dopo rallentamento o fermata) senza che siano necessarie manovre di riavviamento.

mounted between gear reducer and motor or motor-variator

Modulo codice		Taratura [N m] a n LA ± 18	n ₁ [min ⁻¹]		W 1)	K life	Р	М	N	Q	F	S	D	E	G	С	∰ kg
	2 800	1 400	900	≤355	[J]		Ø	Ø	Ø h6		Ø		Ø				ر ک
MLA 80	19	31.5	45	63	12 720	2 940	200	165	130	3.5	11.5	12	19 j6	40	88	43	9
MLA 90	19	31.5	45	90	12 720	2 940	200	165	130	3.5	11.5	12	35 j6	50	88	43	9
MLA 112	37.5	63	90	180	20 400	5 880	250	215	180	4	14	14	28 j6	60	110	56	14
MLA 132	75	125	180	355	31 800	11 760	300	265	230	4	14	14	38 k6	80	153	85	25
MLA 160	132	224	315	630 ²⁾	51 000	23 520	350	300	250	5	18	18	42 k6	110	190	110	45
MLA 180	132	224	315	630 ²⁾	51 000	23 520	350	300	250	5	18	18	48 k6	110	190	110	45
MLA 200	150	250	355	710	51 000	23 520	400	350	300	5	18	18	55 m6	110	190	110	54

1) W [J]: lavoro di attrito massimo consentito per un singolo slittamento.

2) Da $n_2 \le 224 \text{ min}^{-1}$ passaggio 710 N m

Viene utilizzato per l'arresto immediato del motore in caso di slittamento dell'accoppiamento dovuto a sovraccarico.

L'uso del dispositivo di segnalazione dello slittamento è previsto quando $n_1 \ge 900 \text{ min}^{-1}$, in particolare quando il sovraccarico può persistere a lungo causando surriscaldamento con conseguente riduzione del momento torcente limite, rapida usura e deterioramento dei rivestimenti di attrito.

Esistono due tipi di sensori:

"Rivelatore scorrevole 115V" e "Rivelatore scorrevole 230V".

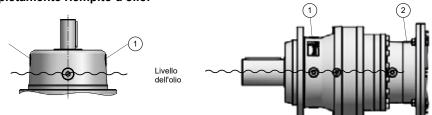
Codice per la designazione : vedi tabella codici modulo.

Messa in servizio

Effettuare un controllo generale assicurandosi, in particolare, che il riduttore sia completo di lubrificante fino a livello e che sia montato nella forma costruttiva indicata in targa.

Il tappo di riempimento e lo sfiatatoio vengono forniti smontati, posizionati vicino al loro alloggiamento. Prima della messa in servizio, una volta posizionato il riduttore nella forma costruttiva indicata in targa, sostituire il tappo chiuso con il tappo di carico con sfiato (ved. fig. sotto).

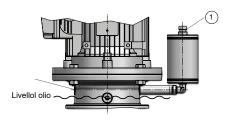
Riempimento d'olio



Prestare attenzione alla corretta posizione del tappo di livello dell'olio (vedi cap. 6 del cat. EP).

Se i riduttori sono forniti senza lubrificante, è necessario riempirli con olio appropriato prima della messa in servizio. Allo stesso modo, quando è presente il freno di stazionamento, è necessario riempire anche questo con un lubrificante specifico (vedi cap. 6 del cat. EP).

Per forme costruttive con lato entrata in posizione verticale, durante il riempimento dell'olio è molto importante aprire sempre il tappo posizionato sopra all'aria di livello e sfiato in modo da raggiungere il livello corretto.

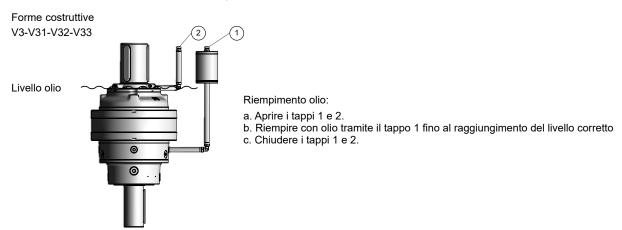

Quando la velocità di uscita n_2 è inferiore a 0,3 min⁻¹ e la posizione di montaggio è orizzontale, il riduttore deve essere completamente riempito d'olio.

Riempimento olio:

- a. Aprire i tappi 1 e 2.
- b. Riempire d'olio con il tappo 1 fino al livello corretto.
- c. Chiudere i tappi 1 e 2.

Serbatoi di espansione

Per alcune posizioni di montaggio, come previsto al cap. 6 del cat. EP, è necessario un vaso di espansione per consentire il corretto livello dell'olio e la naturale espansione termica del lubrificante.


E' molto importante che venga posizionato al di sopra del livello dell'olio.

Per il riempimento dell'olio considerare il diagramma sotto:

Riempimento olio:

- a. Aprire i tappi 1 e 2.
- b. Riempire con olio tramite il tappo 1 fino al raggiungimento del livello corretto
- c. Chiudere i tappi 1 e 2.

Per le grandezze da 030A con le forme costruttive V3-V31-V32-V33, se ordinate, il kit del serbatoio di espansione non include le tubazioni. In questi casi, riferirsi al diagramma sotto:

Tappi

Per la serie EP, i tappi sono magnetici. La grandezza dei tappi e i valori del momento di serraggio sono indicati sotto.

		Tappi di ca	arico			Tappi di sf	iato
	Ø	Ch	Momento di serraggio		Ø	Ch	Momento di serraggio
=			[N m]				[N m]
, Ø ,	G 1/8 " G 1/4" G 3/8 "	5 6 8	8 13 20	Ø	G 1/4 " G 3/8 " G 1/2 "	17 20 24	12 16 23
ि इ	G 1/2 " G 3/4" G 1"	10 12 17	30 45 65	5	G 3/4 " G 1" G 1" 1/4	32 40 50	37 58 105
	G 1" 1/4 G 1" 1/2	22 24	100 125		G 1" 1/2	55	126

¹⁾ Valori validi con rondella in alluminio.

In occasione della prima messa in esercizio, prima di procedere al normale ciclo di lavoro, è opportuno che il riduttore sia posto in funzione in assenza di carico onde verificarne il corretto funzionamento.

In tale circostanza, causa l'eliminazione di eventuali sacche d'aria residue, potrebbe rendersi necessario un rabbocco di olio per conseguire il corretto riempimento fino a livello.

Durante questa prima prova, è importante controllare:

- · livello di rumore
- vibrazioni
- guarnizioni

Se si notano malfunzionamenti, vedere pag. 74.

Rilascio del freno

Per lo sblocco del freno si raccomanda l'uso di olio idraulico a base minerale; gli oli sintetici possono danneggiare e causare malfunzionamenti nel freno.

Collegare il freno al circuito idraulico della macchina attraverso il foro di rilascio del freno. Prima del primo utilizzo è necessario effettuare lo spurgo.

Seguire le istruzioni riportate di seguito:

- Allentare leggermente il raccordo di sblocco
- Rilasciare il freno a bassa pressione e attendere lo spurgo completo.
- Serrare il raccordo di sblocco

Per ulteriori informazioni, consultare le specifiche istruzioni per l'uso.

Dispositivo antiretro

La presenza sul riduttore del dispositivo antiretro è segnalata da una specifica etichetta che indica la rotazione libera. Questo sistema consente la rotazione in una direzione specifica, impedendo la controrotazione quando l'azionamento è spento. L'esatto senso di rotazione libera è indicato su un'etichetta specifica del riduttore.

Attenzione! Non avviare il motore nella direzione sbagliata! Pericolo!

Rossi

A macchina ferma, controllare periodicamente (più o meno frequentemente secondo l'ambiente e l'impiego):

- a) Tutte le superfici esterne sono pulite e i passaggi d'aria verso il riduttore sono liberi, in modo che il raffreddamento rimanga pienamente efficace. Un accumulo di polvere impedisce una dispersione efficiente del calore dalla carcassa del riduttore e deve essere asportato;
- b) il livello e il grado di deterioramento dell'olio (controllare a riduttore freddo);
- c) il corretto serraggio delle viti di fissaggio.

Durante il servizio, controllare periodicamente:

- · livello di rumore:
- · vibrazioni:
- · guarnizioni;
- ecc.

Attenzione! Dopo un periodo di funzionamento, il riduttore è soggetto a una lieve sovrapressione interna che può causare fuoriuscita di fluido ustionante. Pertanto, prima di allentare i tappi (di qualunque tipo) attendere che il riduttore si sia raffreddato, diversamente avvalersi di opportune protezioni controle ustioni derivanti dal contatto con l'olio caldo. In ogni caso, procedere sempre con la massima cautela.

Le massime temperature dell'olio, indicate nella tabella dell'intervallo di lubrificazione non sono pregiudizievoli per il buon funzionamento del riduttore.

Secondo la periodicità indicata in tabella occorre rilubrificare il riduttore.

Impiegare solo lubrificanti dello stesso tipo indicati nella targa di lubrificazione.

Temperatura dell'olio [°C]	Intervallo di lu	brificazione [h]
	olio sintetico	olio minerale
≤ 65	12 500	5 600
65 ÷ 80	10 000	2 800
80 ÷ 95	6 300	1 400

Gli intervalli di cambio olio presuppongono un ambiente privo di inquinamento. Per sovraccarichi forti dimezzare i valori. Indipendentemente dalla durata di funzionamento, provvedere alla sostituzione dell'olio:

ogni 2 ÷ 4 anni per olio sintetico.

ogni 1 ÷ 2 anni, per l'olio minerale;

Durante le operazioni di cambio olio, dopo avere svitato anche il tappo di carico per facilitare lo scarico dell'olio (per la posizione del tappo ved. cap. 6 del cat. EP):

- lavare la parte interna della carcassa del riduttore utilizzando lo stesso tipo di olio adatto al funzionamento (indicato sulla targhetta di lubrificazione); l'olio utilizzato per questo lavaggio può essere utilizzato per ulteriori lavaggi dopo un'adeguata filtrazione con 25 µm di standard di filtrazione;
- · pulire, con un getto d'aria compressa, tutti i tappi magnetici, avendo cura di rimontarli nella loro posizione originale;
- riempire il riduttore con olio nuovo fino al livello, utilizzando solo olio dello stesso tipo e della stessa viscosità come da targhetta di lubrificazione.
- 1) Le quantità di lubrificante indicate nel cap. 6 del cat. EP sono approssimative e indicative per l'approvvigionamento. L'esatta quantità di olio da immettere nel riduttore è data dal livello. Quando la velocità di uscita n_2 è inferiore a 0,3 min⁻¹, per tutte le posizioni di montaggio fare riferimento alle quantità approssimative di olio indicate per la posizione V1.

Sostituire gli anelli di tenuta in caso di smontaggio o di controllo periodico; in questo caso, il nuovo anello deve essere posizionato in modo da non lavorare sulla stessa pista di scorrimento dell'anello precedente.

Una messa in servizio inadeguata può danneggiare il riduttore, il freno e compromettere il corretto funzionamento dell'applicazione. Non smontare e non modificare alcun componente del freno per non compromettere il corretto funzionamento del riduttore/freno.

Prima della messa in funzione verificare che:

- il riduttore è stato correttamente installato e fissato alla macchina
- il riduttore e il freno sono correttamente lubrificati (livello olio e quantità grasso, se previsti).
- i lubrificanti sono adeguati.
- · non c'è alcuna perdita di lubrificante da tappi / tenute
- il livello dell'olio, i tappi di scarico e le relative valvole di sfiato siano facilmente accessibili
- durante il funzionamento, la temperatura massima della carcassa del freno e/o del riduttore non supera mai la temperatura ammessa (95°C per i prodotti a catalogo)
- il freno si avvia quando l'albero della macchina è fermo (condizioni statiche)
- il tubo di alimentazione (apertura e chiusura) sia collegato correttamente al freno e non vi siano perdite d'olio.

Per l'alimentazione del freno si consiglia l'utilizzo di olio idraulico a base minerale; gli olii sintetici potrebbero danneggiare e compromettere il regolare funzionamento del freno.

Collegare un raccordo del circuito idraulico dell'impianto al foro di comando presente sul freno, dopo avere rimosso il tappo di protezione.

Prima dell'utilizzo è necessario effettuare lo spurgo dell'aria. Svitare leggermente il raccordo sul foro di comando, mantenendo la pressione fino alla completa fuoriuscita dell'aria, quindi riavvitare il raccordo.

- la pressione di alimentazione sia sufficiente per aprire completamente il freno (maggiore della "pressione di apertura [p]" differente per momento frenante e tipologia di freno)
- durante la fase di chiusura del freno, la pressione nel ramo di alimentazione sia 0 bar. Attenzione, eventuale pressione residua nel tubo di alimentazione contribuisce a ridurre il momento frenante statico MBstat.
- la motorizzazione e l'eventuale valvola di comando siano correttamente installate e collegate al freno

Tutte le attività di manutenzione devono essere eseguite in sicurezza.

A macchina ferma, controllare periodicamente (più o meno frequentemente secondo l'ambiente e l'impiego):

- a) le superfici esterne siano pulite e i passaggi di aria verso il riduttore e freno siano liberi, in modo da garantire piena efficienza del raffreddamento. Un accumulo di polvere impedisce una dispersione efficiente del calore
- b) livello dell'olio e grado di deterioramento
- c) il corretto serraggio delle viti di fissaggio.

Durante il servizio, controllare periodicamente:

- · livello di vibrazioni e rumore
- · eventuali perdite di lubrificante
- · eventuali perdite di pressione sul ramo di alimentazione del freno (possibili perdite dalle tenute interne del freno).

Attenzione:

Dopo un periodo di funzionamento, il riduttore è soggetto a una lieve sovrappressione interna che può causare fuoriuscita di fluido potenzialmente ustionante. Pertanto, prima di allentare i tappi (di qualunque tipo) attendere che il riduttore si sia raffreddato. In ogni caso, procedere sempre con la massima cautela.

Cambio dell'olio

Il cambio dell'olio del freno deve essere effettuato secondo gli stessi intervalli del riduttore.

Salvo casi particolari, la lubrificazione del freno è separata da quella del riduttore, quindi è necessario agire sugli appositi tappi presenti sul freno.

Utilizzare solo olio dello stesso tipo e viscosità e non mescolare oli diversi. Si consiglia di cambiare l'olio lubrificante a freno caldo, per evitare eventuali depositi e facilitare l'uscita.

Per le operazioni di scarico e riempimento dell'olio, utilizzare correttamente gli appositi tappi.

Cambio delle tenute

Sostituire le guarnizioni quando si smonta o si controlla periodicamente.

La durata dipende da diversi fattori quali la velocità di trascinamento, la temperatura, le condizioni ambientali, ecc.; a titolo indicativo, può variare da 1 600 ÷ 12 500 h.

Per le taglie superiori a 030A (eccetto 031A, 043A), rabboccare le guarnizioni di uscita con grasso ogni 3 000 ore di funzionamento o almeno ogni 6 mesi.

Attenzione:

l'eventuale aumento elevato dei livelli durante il controllo degli oli lubrificanti potrebbe essere causato da una perdita d'olio dovuta all'usura della guarnizione del freno.

In questo caso è necessario arrestare il riduttore/freno e contattare il servizio di assistenza Rossi per la riparazione.

Procedura di ingrassaggio per i cuscinetti di rotazione in uscita

Nel caso di riduttori con uscite orientabili (esecuzione di uscita R-S-H), indipendentemente dalla posizione di montaggio, il cuscinetto di uscita presenta una lubrificazione indipendente con grasso.

Il reingrassaggio dei cuscinetti deve essere effettuato con gli stessi intervalli di cambio olio.

Si consiglia di ingrassare nuovamente i cuscinetti e le guarnizioni con lo stesso grasso con cui è stato fornito il riduttore. In alternativa, è possibile utilizzare grassi con le stesse specifiche.

ATTENZIONE: la procedura di reingrassaggio può causare un passaggio di grasso dalla zona di lubrificazione dei cuscinetti a quella dell'olio. Questo non comporta alcun malfunzionamento del riduttore. Si raccomanda comunque di reingrassare prima di cambiare l'olio del riduttore, in modo da espellere l'eventuale grasso nella zona di lubrificazione dell'olio.

Per le quantità di grasso si considerano i dati della tabella seguente.

Grand.	F	ર	5	3	H	1
	esecuzione	quantità	esecuzione	quantità	esecuzione	quantità
	uscita	grasso g	uscita	grasso g	uscita	grasso g
007A	H30b	50	S30b	50	H30b	50
015A	H30c	100	S30c	100	H30c	70
021A	H30d	120	S30d	120	H30d	120
030A	H30e	150	S30e	150 H30e		150
042A	H30f	170	S30f	170 H30f		170
060A	H30g	200	S30g	200 H30g		200
085A	H30h	220	S30h	220	H30h	220
125A	H30i	250	S30i	250	H30i	250
180A	H30j	300	S30j	300	H30j	300
250A	H30k	350	S30k	350	H30k	350

Anomalie: cause e rimedi

Se si verificano deviazioni dal funzionamento normale, fare riferimento alla tabella seguente. Se le deviazioni persistono, consultare la Rossi S.p.A.

Anomalia rilevata	Possibili cause	Rimedi	
	Lubrificazione inadeguata: -quantità di olio eccessiva o insufficiente - lubrificante per scarichi -troppo serrati i cuscinetti a rulli conici -temperatura ambiente eccessiva	Controllare: -livello dell'olio (riduttore fermo) -tipo di lubrificante Contattare Rossi Aumentare il raffreddamento o correggere la temperatura ambiente Pulire il coperchio della ventola	
Temperatura eccessiva (in servizio continuo o su cuscinetti)	Aperture di aspirazione ostruite del coperchio del ventilatore		
	Guasto, difetto o cattiva lubrificazione del cuscinetto	Contattare Rossi	
	Sistema di raffreddamento dell'olio inefficiente o fuori servizio: filtro ostruito, portata insufficiente di olio (scambiatore) o di acqua (serpentina), pompa fuori servizio, ecc.	Controllare la pompa, i condotti, il filtro dell'olio e l'efficienza degli indicatori di sicurezza (pressostati, termostati, flussostati, ecc.)	
Rumore anomalo	Uno o più denti con: - ammaccature o sbeccature - eccessiva rugosità dei fianchi Cuscinetti in avaria o mal lubrificati o difettosi Cuscinetti a rulli conici con gioco eccessivo	Contattare Rossi	
	Vibrazioni	Controllare il fissaggio	
	Anello di tenuta con labbro di tenuta usurato, bacheliz- zato, danneggiato o montato erroneamente	Sostituire l'anello di tenuta	
Lubrificante perdita dagli anelli di tenuta Il freno a disco multiplo non si blocca	Sede rotante danneggiata (rigatura, ruggine, ammaccattura, ecc.)	Rigenerare la sede	
	Posizionamento in forma costruttiva diversa da quella prevista in targa	Orientare correttamente il riduttore	
	Pressione residua nel circuito	Verificare il circuito idraulico	
	Dischi usurati	Contattare Rossi	
Il freno a disco multiplo non si sblocca	Nessuna pressione al freno	Verificare il collegamento del freno	
	Tenute freno difettose	Contattare Rossi	
Con il motore in funzione, il riduttore non funziona	Possibile blocco del freno	Verificare il circuito idraulico di frenatura	

NOTA

Quando si consulta lo stato Rossi:

- tutti i dati riportati sulla targhetta del riduttore o del motoriduttore;
- natura e durata del guasto,
- quando e in quali condizioni si è verificato il guasto;
- Durante il periodo di garanziaanty, per non perdere la sua validità, non smontare o aprire il riduttore senza l'approvazione di Rossi.

HEADQUARTERS

Rossi S.p.A. Via Emilia Ovest 915/A 41123 Modena - Italy

info@rossi.com www.rossi.com

UTD.175.04-2025.00_IT

© Rossi S.p.A. Rossi reserves the right to make any modification whenever to this publication contents. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described.

The Customer is responsible for the correct selection and application of product in view of its industrial and/or commercial needs, unless the use has been recommended by technical qualified personnel of Rossi, who were duly informed about Customer's application purposes. In this case all the necessary data required for the selection shall be communicated exactly and in writing by the Customer, stated in the order and confirmed by Rossi. The Customer is always responsible for the safety of product applications. Every care has been taken in the drawing up of the catalog to ensure the accuracy of the information contained in this publication, however Rossi can accept no responsibility for any errors, omissions or outdated data. Due to the constant evolution of the state of the art, Rossi reserves the right to make any modification whenever to this publication contents. The responsibility for the product selection is of the Customer, excluding different agreements duly legalized in writing and undersigned by the Parties.